Spaces:
Runtime error
Runtime error
import torch | |
from pytorch_grad_cam import GradCAM | |
from pytorch_grad_cam.utils.image import show_cam_on_image | |
def generate_confidences( | |
model, | |
input_img, | |
num_top_preds, | |
): | |
#input_img = test_transforms(image=input_img) | |
input_img = input_img["image"] | |
input_img = input_img.unsqueeze(0) | |
model.eval() | |
log_probs = model(input_img)[0].detach() | |
model.train() | |
probs = torch.exp(log_probs) | |
confidences = { | |
config.CLASSES[i]: float(probs[i]) for i in range(len(config.CLASSES)) | |
} | |
# Select top 5 confidences based on value | |
confidences = { | |
k: v | |
for k, v in sorted(confidences.items(), key=lambda item: item[1], reverse=True)[ | |
:num_top_preds | |
] | |
} | |
return input_img, confidences | |
def generate_gradcam( | |
model, | |
org_img, | |
input_img, | |
show_gradcam, | |
gradcam_layer, | |
gradcam_opacity, | |
): | |
if show_gradcam: | |
if gradcam_layer == -1: | |
target_layers = [model.l3[-1]] | |
elif gradcam_layer == -2: | |
target_layers = [model.l2[-1]] | |
cam = GradCAM( | |
model=model, | |
target_layers=target_layers, | |
) | |
grayscale_cam = cam(input_tensor=input_img, targets=None) | |
grayscale_cam = grayscale_cam[0, :] | |
visualization = show_cam_on_image( | |
org_img / 255, | |
grayscale_cam, | |
use_rgb=True, | |
image_weight=(1 - gradcam_opacity), | |
) | |
else: | |
visualization = None | |
return visualization | |
def generate_missclassified_imgs( | |
model, | |
show_misclassified, | |
num_misclassified, | |
): | |
if show_misclassified: | |
plot = model.plot_incorrect_predictions_helper(num_misclassified) | |
else: | |
plot = None | |
return plot |