GitHub Actions
Deploy backend from GitHub Actions
bc8608f
raw
history blame
5.87 kB
"""Pydantic models for chat API."""
from typing import List, Optional, Dict, Any
from pydantic import BaseModel, Field, validator
class RetrievalConfig(BaseModel):
"""Configuration for retrieval operations."""
similarity_threshold: float = Field(
default=0.7,
ge=0.0,
le=1.0,
description="Minimum similarity score for retrieval"
)
max_results: int = Field(
default=5,
ge=1,
le=20,
description="Maximum results to retrieve"
)
use_mmr: bool = Field(
default=True,
description="Use Maximal Marginal Relevance"
)
mmr_lambda: float = Field(
default=0.5,
ge=0.0,
le=1.0,
description="MMR diversity parameter"
)
exclude_templates: bool = Field(
default=True,
description="Exclude template content from results"
)
include_metadata: bool = Field(
default=True,
description="Include chunk metadata in results"
)
class ChatRequest(BaseModel):
"""Request model for chat endpoint."""
query: str = Field(
...,
min_length=1,
max_length=1000,
description="User's question"
)
context: Optional[List[str]] = Field(
None,
description="Optional context to include"
)
config: Optional[RetrievalConfig] = Field(
None,
description="Retrieval configuration"
)
stream: bool = Field(
default=False,
description="Enable streaming response"
)
conversation_id: Optional[str] = Field(
None,
description="Conversation ID for context preservation"
)
@validator('query')
def validate_query(cls, v):
if not v or v.strip() == "":
raise ValueError("query cannot be empty")
if len(v.strip()) < 3:
raise ValueError("query must be at least 3 characters")
return v.strip()
class TextSelectionRequest(BaseModel):
"""Request model for text selection Q&A."""
query: str = Field(..., description="Question about selected text")
selected_text: str = Field(..., description="Text selected by user")
context: Optional[str] = Field(
None,
description="Surrounding context (optional)"
)
page_number: Optional[int] = Field(
None,
description="Page number if applicable"
)
class Source(BaseModel):
"""Source information for chat response."""
content: str = Field(..., description="Relevant content snippet")
file_path: str = Field(..., description="Source file path")
section_header: Optional[str] = Field(None, description="Section title")
similarity_score: float = Field(..., ge=0.0, le=1.0)
chunk_index: int = Field(..., description="Chunk position in document")
content_hash: str = Field(..., description="SHA256 hash of content")
is_duplicate: bool = Field(default=False, description="True if duplicate")
class ChatResponse(BaseModel):
"""Response model for chat endpoint."""
response: str = Field(..., description="Generated answer")
sources: List[Source] = Field(..., description="Sources used for answer")
context_used: bool = Field(..., description="Whether RAG context was used")
query_embedding: Optional[List[float]] = Field(
None,
description="Query embedding (for debugging)"
)
response_id: str = Field(..., description="Unique response identifier")
metadata: Dict[str, Any] = Field(
default_factory=dict,
description="Additional metadata"
)
model_used: Optional[str] = Field(None, description="Model used for generation")
tokens_used: Optional[int] = Field(None, description="Tokens consumed")
duration_ms: Optional[int] = Field(None, description="Response time in milliseconds")
class SearchRequest(BaseModel):
"""Request model for semantic search."""
query: str = Field(..., description="Search query")
config: Optional[RetrievalConfig] = Field(None, description="Search configuration")
limit: int = Field(
default=10,
ge=1,
le=50,
description="Maximum results to return"
)
filters: Optional[Dict[str, Any]] = Field(
None,
description="Additional search filters"
)
class SearchResult(BaseModel):
"""Single search result."""
id: str = Field(..., description="Document ID")
content: str = Field(..., description="Document content")
file_path: str = Field(..., description="Source file path")
section_header: Optional[str] = Field(None, description="Section title")
similarity_score: float = Field(..., ge=0.0, le=1.0)
rank: int = Field(..., description="Result rank")
is_duplicate: bool = Field(default=False, description="True if duplicate")
metadata: Dict[str, Any] = Field(default_factory=dict)
class SearchResponse(BaseModel):
"""Response model for semantic search."""
results: List[SearchResult] = Field(..., description="Search results")
total: int = Field(..., description="Total matches found")
query_time_ms: int = Field(..., description="Search duration in milliseconds")
query_embedding: Optional[List[float]] = Field(None, description="Query embedding")
class HealthResponse(BaseModel):
"""Health check response."""
status: str = Field(..., description="System status")
version: str = Field(..., description="API version")
uptime_seconds: int = Field(..., description="Server uptime in seconds")
services: Dict[str, Any] = Field(..., description="Service statuses")
metrics: Dict[str, Any] = Field(..., description="System metrics")
class ErrorResponse(BaseModel):
"""Standard error response."""
error: Dict[str, Any] = Field(..., description="Error details")
request_id: Optional[str] = Field(None, description="Request identifier")