Spaces:
Runtime error
Runtime error
from diffusers import AudioLDMPipeline | |
import torch | |
import gradio as gr | |
from transformers import pipeline | |
#from googletrans import Translator | |
import os | |
if torch.cuda.is_available(): | |
device = "cuda" | |
torch_dtype = torch.float16 | |
else: | |
device = "cpu" | |
torch_dtype = torch.float32 | |
print(device) | |
repo_id = "cvssp/audioldm-m-full" | |
pipe = AudioLDMPipeline.from_pretrained(repo_id, torch_dtype=torch_dtype) | |
pipe = pipe.to(device) | |
# pipe.unet = torch.compile(pipe.unet) | |
#pipe.unet = torch.compile(pipe.unet) | |
def generate_sound(text): | |
print(text) | |
# text=translate_text(text) | |
text = translate_text(text) | |
#translator = Translator() | |
#text=translator.translate(text, src='es',dest="en").text | |
print(text) | |
waveforms = pipe(text, | |
num_inference_steps=25, | |
audio_length_in_s=5, | |
negative_prompt = "low quality, average quality").audios | |
rate =16000 | |
return rate, waveforms[0] | |
#return gr.make_waveform((rate, waveforms[0])) | |
es_en_translator = pipeline("translation",model = "Helsinki-NLP/opus-mt-es-en") | |
def translate_text(text): | |
text = es_en_translator(text)[0].get("translation_text") | |
return text | |
demo = gr.Blocks() | |
with demo: | |
with gr.Row(): | |
with gr.Column(): | |
text = gr.Textbox(value="Ingrese el texto:") | |
button = gr.Button(value="Generar") | |
with gr.Column(): | |
output = gr.Audio() | |
#output = gr.Video(label="Output") | |
button.click(generate_sound,text,output) | |
demo.launch() |