mrneuralnet's picture
Upload 14 files
4142b1b verified
import torch
import numpy as np
import cv2
import tempfile, base64
def readb64(uri):
encoded_data = uri.split(',')[-1]
nparr = np.frombuffer(base64.b64decode(encoded_data), np.uint8)
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
return img
def img2base64(img, extension="jpg"):
_, img_encoded = cv2.imencode(f".{extension}", img)
img_base64 = base64.b64encode(img_encoded)
img_base64 = img_base64.decode('utf-8')
return img_base64
def binary2video(video_binary):
# byte_arr = BytesIO()
# byte_arr.write(video_binary)
temp_ = tempfile.NamedTemporaryFile(suffix='.mp4')
# decoded_string = base64.b64decode(video_binary)
temp_.write(video_binary)
video_capture = cv2.VideoCapture(temp_.name)
ret, frame = video_capture.read()
return video_capture
def extract_frames(data_path, interval=30, max_frames=50):
"""Method to extract frames"""
cap = cv2.VideoCapture(data_path)
frame_num = 0
frames = list()
while cap.isOpened():
success, image = cap.read()
if not success:
break
# image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# image = torch.tensor(image) - torch.tensor([104, 117, 123])
if frame_num % interval == 0:
frames.append(image)
frame_num += 1
if len(frames) > max_frames:
break
cap.release()
# if len(frames) > max_frames:
# samples = np.random.choice(
# np.arange(0, len(frames)), size=max_frames, replace=False)
# return [frames[_] for _ in samples]
return frames
"""FilePicker for streamlit.
Still doesn't seem to be a good solution for a way to select files to process from the server Streamlit is running on.
Here's a pretty functional solution.
Usage:
```
import streamlit as st
from filepicker import st_file_selector
tif_file = st_file_selector(st, key = 'tif', label = 'Choose tif file')
```
"""
import os
import streamlit as st
def update_dir(key):
choice = st.session_state[key]
if os.path.isdir(os.path.join(st.session_state[key+'curr_dir'], choice)):
st.session_state[key+'curr_dir'] = os.path.normpath(os.path.join(st.session_state[key+'curr_dir'], choice))
files = sorted(os.listdir(st.session_state[key+'curr_dir']))
if "images" in files:
files.remove("images")
st.session_state[key+'files'] = files
def st_file_selector(st_placeholder, path='.', label='Select a file/folder', key = 'selected'):
if key+'curr_dir' not in st.session_state:
base_path = '.' if path is None or path == '' else path
base_path = base_path if os.path.isdir(base_path) else os.path.dirname(base_path)
base_path = '.' if base_path is None or base_path == '' else base_path
files = sorted(os.listdir(base_path))
files.insert(0, 'Choose a file...')
if "images" in files:
files.remove("images")
st.session_state[key+'files'] = files
st.session_state[key+'curr_dir'] = base_path
else:
base_path = st.session_state[key+'curr_dir']
selected_file = st_placeholder.selectbox(label=label,
options=st.session_state[key+'files'],
key=key,
on_change = lambda: update_dir(key))
if selected_file == "Choose a file...":
return None
return selected_file