Spaces:
Runtime error
Runtime error
import argparse | |
import os | |
import sys | |
import torch | |
from PIL import Image | |
import torchvision.transforms as transforms | |
from networks.drn_seg import DRNSub | |
from utils.tools import * | |
from utils.visualize import * | |
def load_classifier(model_path, gpu_id): | |
if torch.cuda.is_available() and gpu_id != -1: | |
device = 'cuda:{}'.format(gpu_id) | |
else: | |
device = 'cpu' | |
model = DRNSub(1) | |
state_dict = torch.load(model_path, map_location='cpu') | |
model.load_state_dict(state_dict['model']) | |
model.to(device) | |
model.device = device | |
model.eval() | |
return model | |
tf = transforms.Compose([transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], | |
std=[0.229, 0.224, 0.225])]) | |
def classify_fake(model, img_path, no_crop=False, | |
model_file='utils/dlib_face_detector/mmod_human_face_detector.dat'): | |
# Data preprocessing | |
im_w, im_h = Image.open(img_path).size | |
if no_crop: | |
face = Image.open(img_path).convert('RGB') | |
else: | |
faces = face_detection(img_path, verbose=False, model_file=model_file) | |
if len(faces) == 0: | |
print("no face detected by dlib, exiting") | |
sys.exit() | |
face, box = faces[0] | |
face = resize_shorter_side(face, 400)[0] | |
face_tens = tf(face).to(model.device) | |
# Prediction | |
with torch.no_grad(): | |
prob = model(face_tens.unsqueeze(0))[0].sigmoid().cpu().item() | |
return prob | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--input_path", required=True, help="the model input") | |
parser.add_argument( | |
"--model_path", required=True, help="path to the drn model") | |
parser.add_argument( | |
"--gpu_id", default='0', help="the id of the gpu to run model on") | |
parser.add_argument( | |
"--no_crop", | |
action="store_true", | |
help="do not use a face detector, instead run on the full input image") | |
args = parser.parse_args() | |
model = load_classifier(args.model_path, args.gpu_id) | |
prob = classify_fake(model, args.input_path, args.no_crop) | |
print("Probibility being modified by Photoshop FAL: {:.2f}%".format(prob*100)) | |