mrneuralnet commited on
Commit
982865f
1 Parent(s): 3e2e2be

Initial commit

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitignore +2 -0
  2. app.py +72 -0
  3. data/FDDB/img_list.txt +2845 -0
  4. data/__init__.py +3 -0
  5. data/__pycache__/__init__.cpython-39.pyc +0 -0
  6. data/__pycache__/config.cpython-39.pyc +0 -0
  7. data/__pycache__/data_augment.cpython-39.pyc +0 -0
  8. data/__pycache__/wider_face.cpython-39.pyc +0 -0
  9. data/config.py +42 -0
  10. data/data_augment.py +237 -0
  11. data/wider_face.py +101 -0
  12. dataset/__init__.py +17 -0
  13. dataset/abstract_dataset.py +41 -0
  14. dataset/celeb_df.py +126 -0
  15. dataset/dfdc.py +124 -0
  16. dataset/faceforensics.py +107 -0
  17. dataset/wild_deepfake.py +100 -0
  18. extract_video.py +233 -0
  19. inference.py +142 -0
  20. layers/__init__.py +2 -0
  21. layers/__pycache__/__init__.cpython-39.pyc +0 -0
  22. layers/functions/__pycache__/prior_box.cpython-39.pyc +0 -0
  23. layers/functions/prior_box.py +34 -0
  24. layers/modules/__init__.py +3 -0
  25. layers/modules/__pycache__/__init__.cpython-39.pyc +0 -0
  26. layers/modules/__pycache__/multibox_loss.cpython-39.pyc +0 -0
  27. layers/modules/multibox_loss.py +125 -0
  28. loss/__init__.py +12 -0
  29. model/__init__.py +12 -0
  30. model/__pycache__/__init__.cpython-39.pyc +0 -0
  31. model/__pycache__/common.cpython-39.pyc +0 -0
  32. model/common.py +200 -0
  33. model/network/Recce.py +133 -0
  34. model/network/__init__.py +1 -0
  35. model/network/__pycache__/Recce.cpython-39.pyc +0 -0
  36. model/network/__pycache__/__init__.cpython-39.pyc +0 -0
  37. models/__init__.py +0 -0
  38. models/__pycache__/__init__.cpython-39.pyc +0 -0
  39. models/__pycache__/net.cpython-39.pyc +0 -0
  40. models/__pycache__/retinaface.cpython-39.pyc +0 -0
  41. models/net.py +137 -0
  42. models/retinaface.py +127 -0
  43. optimizer/__init__.py +30 -0
  44. requirements.txt +24 -0
  45. scheduler/__init__.py +36 -0
  46. trainer/__init__.py +5 -0
  47. trainer/abstract_trainer.py +100 -0
  48. trainer/exp_mgpu_trainer.py +370 -0
  49. trainer/exp_tester.py +144 -0
  50. trainer/utils.py +183 -0
.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ temps/*
2
+ !temps/.gitkeep
app.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import base64
2
+ import json
3
+ import os, shutil
4
+ import re
5
+ import time
6
+ import uuid
7
+
8
+ import cv2
9
+
10
+ import numpy as np
11
+ import streamlit as st
12
+ from PIL import Image
13
+ # from extract_video import extract_method_single_video
14
+
15
+ import shlex
16
+ import subprocess
17
+
18
+ def main():
19
+ st.markdown("###")
20
+ uploaded_file = st.file_uploader('Upload a picture', type=['mp4', 'jpg', 'jpeg', 'png'], accept_multiple_files=False)
21
+ if uploaded_file:
22
+ random_id = uuid.uuid1()
23
+ filename = "{}.{}".format(random_id, uploaded_file.type.split("/")[-1])
24
+ file_type = uploaded_file.type.split("/")[0]
25
+
26
+ if uploaded_file.type == 'video/mp4':
27
+ with open(f"temps/{filename}", mode='wb') as f:
28
+ f.write(uploaded_file.read())
29
+ st.video(uploaded_file)
30
+ pass
31
+ else:
32
+ img = Image.open(uploaded_file).convert('RGB')
33
+ ext = uploaded_file.type.split("/")[-1]
34
+ with open(f"temps/{filename}", mode='wb') as f:
35
+ f.write(uploaded_file.getbuffer())
36
+ st.image(img)
37
+
38
+
39
+
40
+ with st.spinner(f'Processing {file_type}...'):
41
+ subprocess.run(shlex.split(f"python.exe extract_video.py --device cuda --max_frames 50 --bs 2 --frame_interval 5 --confidence_threshold 0.997 --data_path temps/{filename}"))
42
+ st.text(f'1. Processing {file_type} ✅')
43
+ with st.spinner(f'Analyzing {file_type}...'):
44
+ pred = subprocess.run(shlex.split(f"python inference.py --weight weights/model_params_ffpp_c23.pickle --device cuda --image_folder temps/images/{filename}"), capture_output=True)
45
+ st.text(f'2. Analyzing {file_type} ✅')
46
+
47
+ print(pred)
48
+ try:
49
+ fake_probability = float(pred.stdout.decode('utf-8').split('Mean prediction: ')[-1])
50
+ if fake_probability > 0.6:
51
+ st.error(' FAKE! ', icon="🚨")
52
+ else:
53
+ st.success(" REAL FOOTAGE! ", icon="✅")
54
+ st.text("fake probability {:.2f}".format(fake_probability))
55
+
56
+ os.remove(f"temps/{filename}")
57
+ folder_name = ".".join(filename.split(".")[:-1])
58
+ shutil.rmtree(f"temps/images/{folder_name}")
59
+ except:
60
+ st.text(pred.stdout.decode('utf-8'))
61
+
62
+ st.text("")
63
+ st.text(pred)
64
+
65
+
66
+
67
+ if __name__ == "__main__":
68
+ st.set_page_config(
69
+ page_title="Nodeflux Deepfake Detection", page_icon=":pencil2:"
70
+ )
71
+ st.title("Deepfake Detection")
72
+ main()
data/FDDB/img_list.txt ADDED
@@ -0,0 +1,2845 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2002/08/11/big/img_591
2
+ 2002/08/26/big/img_265
3
+ 2002/07/19/big/img_423
4
+ 2002/08/24/big/img_490
5
+ 2002/08/31/big/img_17676
6
+ 2002/07/31/big/img_228
7
+ 2002/07/24/big/img_402
8
+ 2002/08/04/big/img_769
9
+ 2002/07/19/big/img_581
10
+ 2002/08/13/big/img_723
11
+ 2002/08/12/big/img_821
12
+ 2003/01/17/big/img_610
13
+ 2002/08/13/big/img_1116
14
+ 2002/08/28/big/img_19238
15
+ 2002/08/21/big/img_660
16
+ 2002/08/14/big/img_607
17
+ 2002/08/05/big/img_3708
18
+ 2002/08/19/big/img_511
19
+ 2002/08/07/big/img_1316
20
+ 2002/07/25/big/img_1047
21
+ 2002/07/23/big/img_474
22
+ 2002/07/27/big/img_970
23
+ 2002/09/02/big/img_15752
24
+ 2002/09/01/big/img_16378
25
+ 2002/09/01/big/img_16189
26
+ 2002/08/26/big/img_276
27
+ 2002/07/24/big/img_518
28
+ 2002/08/14/big/img_1027
29
+ 2002/08/24/big/img_733
30
+ 2002/08/15/big/img_249
31
+ 2003/01/15/big/img_1371
32
+ 2002/08/07/big/img_1348
33
+ 2003/01/01/big/img_331
34
+ 2002/08/23/big/img_536
35
+ 2002/07/30/big/img_224
36
+ 2002/08/10/big/img_763
37
+ 2002/08/21/big/img_293
38
+ 2002/08/15/big/img_1211
39
+ 2002/08/15/big/img_1194
40
+ 2003/01/15/big/img_390
41
+ 2002/08/06/big/img_2893
42
+ 2002/08/17/big/img_691
43
+ 2002/08/07/big/img_1695
44
+ 2002/08/16/big/img_829
45
+ 2002/07/25/big/img_201
46
+ 2002/08/23/big/img_36
47
+ 2003/01/15/big/img_763
48
+ 2003/01/15/big/img_637
49
+ 2002/08/22/big/img_592
50
+ 2002/07/25/big/img_817
51
+ 2003/01/15/big/img_1219
52
+ 2002/08/05/big/img_3508
53
+ 2002/08/15/big/img_1108
54
+ 2002/07/19/big/img_488
55
+ 2003/01/16/big/img_704
56
+ 2003/01/13/big/img_1087
57
+ 2002/08/10/big/img_670
58
+ 2002/07/24/big/img_104
59
+ 2002/08/27/big/img_19823
60
+ 2002/09/01/big/img_16229
61
+ 2003/01/13/big/img_846
62
+ 2002/08/04/big/img_412
63
+ 2002/07/22/big/img_554
64
+ 2002/08/12/big/img_331
65
+ 2002/08/02/big/img_533
66
+ 2002/08/12/big/img_259
67
+ 2002/08/18/big/img_328
68
+ 2003/01/14/big/img_630
69
+ 2002/08/05/big/img_3541
70
+ 2002/08/06/big/img_2390
71
+ 2002/08/20/big/img_150
72
+ 2002/08/02/big/img_1231
73
+ 2002/08/16/big/img_710
74
+ 2002/08/19/big/img_591
75
+ 2002/07/22/big/img_725
76
+ 2002/07/24/big/img_820
77
+ 2003/01/13/big/img_568
78
+ 2002/08/22/big/img_853
79
+ 2002/08/09/big/img_648
80
+ 2002/08/23/big/img_528
81
+ 2003/01/14/big/img_888
82
+ 2002/08/30/big/img_18201
83
+ 2002/08/13/big/img_965
84
+ 2003/01/14/big/img_660
85
+ 2002/07/19/big/img_517
86
+ 2003/01/14/big/img_406
87
+ 2002/08/30/big/img_18433
88
+ 2002/08/07/big/img_1630
89
+ 2002/08/06/big/img_2717
90
+ 2002/08/21/big/img_470
91
+ 2002/07/23/big/img_633
92
+ 2002/08/20/big/img_915
93
+ 2002/08/16/big/img_893
94
+ 2002/07/29/big/img_644
95
+ 2002/08/15/big/img_529
96
+ 2002/08/16/big/img_668
97
+ 2002/08/07/big/img_1871
98
+ 2002/07/25/big/img_192
99
+ 2002/07/31/big/img_961
100
+ 2002/08/19/big/img_738
101
+ 2002/07/31/big/img_382
102
+ 2002/08/19/big/img_298
103
+ 2003/01/17/big/img_608
104
+ 2002/08/21/big/img_514
105
+ 2002/07/23/big/img_183
106
+ 2003/01/17/big/img_536
107
+ 2002/07/24/big/img_478
108
+ 2002/08/06/big/img_2997
109
+ 2002/09/02/big/img_15380
110
+ 2002/08/07/big/img_1153
111
+ 2002/07/31/big/img_967
112
+ 2002/07/31/big/img_711
113
+ 2002/08/26/big/img_664
114
+ 2003/01/01/big/img_326
115
+ 2002/08/24/big/img_775
116
+ 2002/08/08/big/img_961
117
+ 2002/08/16/big/img_77
118
+ 2002/08/12/big/img_296
119
+ 2002/07/22/big/img_905
120
+ 2003/01/13/big/img_284
121
+ 2002/08/13/big/img_887
122
+ 2002/08/24/big/img_849
123
+ 2002/07/30/big/img_345
124
+ 2002/08/18/big/img_419
125
+ 2002/08/01/big/img_1347
126
+ 2002/08/05/big/img_3670
127
+ 2002/07/21/big/img_479
128
+ 2002/08/08/big/img_913
129
+ 2002/09/02/big/img_15828
130
+ 2002/08/30/big/img_18194
131
+ 2002/08/08/big/img_471
132
+ 2002/08/22/big/img_734
133
+ 2002/08/09/big/img_586
134
+ 2002/08/09/big/img_454
135
+ 2002/07/29/big/img_47
136
+ 2002/07/19/big/img_381
137
+ 2002/07/29/big/img_733
138
+ 2002/08/20/big/img_327
139
+ 2002/07/21/big/img_96
140
+ 2002/08/06/big/img_2680
141
+ 2002/07/25/big/img_919
142
+ 2002/07/21/big/img_158
143
+ 2002/07/22/big/img_801
144
+ 2002/07/22/big/img_567
145
+ 2002/07/24/big/img_804
146
+ 2002/07/24/big/img_690
147
+ 2003/01/15/big/img_576
148
+ 2002/08/14/big/img_335
149
+ 2003/01/13/big/img_390
150
+ 2002/08/11/big/img_258
151
+ 2002/07/23/big/img_917
152
+ 2002/08/15/big/img_525
153
+ 2003/01/15/big/img_505
154
+ 2002/07/30/big/img_886
155
+ 2003/01/16/big/img_640
156
+ 2003/01/14/big/img_642
157
+ 2003/01/17/big/img_844
158
+ 2002/08/04/big/img_571
159
+ 2002/08/29/big/img_18702
160
+ 2003/01/15/big/img_240
161
+ 2002/07/29/big/img_553
162
+ 2002/08/10/big/img_354
163
+ 2002/08/18/big/img_17
164
+ 2003/01/15/big/img_782
165
+ 2002/07/27/big/img_382
166
+ 2002/08/14/big/img_970
167
+ 2003/01/16/big/img_70
168
+ 2003/01/16/big/img_625
169
+ 2002/08/18/big/img_341
170
+ 2002/08/26/big/img_188
171
+ 2002/08/09/big/img_405
172
+ 2002/08/02/big/img_37
173
+ 2002/08/13/big/img_748
174
+ 2002/07/22/big/img_399
175
+ 2002/07/25/big/img_844
176
+ 2002/08/12/big/img_340
177
+ 2003/01/13/big/img_815
178
+ 2002/08/26/big/img_5
179
+ 2002/08/10/big/img_158
180
+ 2002/08/18/big/img_95
181
+ 2002/07/29/big/img_1297
182
+ 2003/01/13/big/img_508
183
+ 2002/09/01/big/img_16680
184
+ 2003/01/16/big/img_338
185
+ 2002/08/13/big/img_517
186
+ 2002/07/22/big/img_626
187
+ 2002/08/06/big/img_3024
188
+ 2002/07/26/big/img_499
189
+ 2003/01/13/big/img_387
190
+ 2002/08/31/big/img_18025
191
+ 2002/08/13/big/img_520
192
+ 2003/01/16/big/img_576
193
+ 2002/07/26/big/img_121
194
+ 2002/08/25/big/img_703
195
+ 2002/08/26/big/img_615
196
+ 2002/08/17/big/img_434
197
+ 2002/08/02/big/img_677
198
+ 2002/08/18/big/img_276
199
+ 2002/08/05/big/img_3672
200
+ 2002/07/26/big/img_700
201
+ 2002/07/31/big/img_277
202
+ 2003/01/14/big/img_220
203
+ 2002/08/23/big/img_232
204
+ 2002/08/31/big/img_17422
205
+ 2002/07/22/big/img_508
206
+ 2002/08/13/big/img_681
207
+ 2003/01/15/big/img_638
208
+ 2002/08/30/big/img_18408
209
+ 2003/01/14/big/img_533
210
+ 2003/01/17/big/img_12
211
+ 2002/08/28/big/img_19388
212
+ 2002/08/08/big/img_133
213
+ 2002/07/26/big/img_885
214
+ 2002/08/19/big/img_387
215
+ 2002/08/27/big/img_19976
216
+ 2002/08/26/big/img_118
217
+ 2002/08/28/big/img_19146
218
+ 2002/08/05/big/img_3259
219
+ 2002/08/15/big/img_536
220
+ 2002/07/22/big/img_279
221
+ 2002/07/22/big/img_9
222
+ 2002/08/13/big/img_301
223
+ 2002/08/15/big/img_974
224
+ 2002/08/06/big/img_2355
225
+ 2002/08/01/big/img_1526
226
+ 2002/08/03/big/img_417
227
+ 2002/08/04/big/img_407
228
+ 2002/08/15/big/img_1029
229
+ 2002/07/29/big/img_700
230
+ 2002/08/01/big/img_1463
231
+ 2002/08/31/big/img_17365
232
+ 2002/07/28/big/img_223
233
+ 2002/07/19/big/img_827
234
+ 2002/07/27/big/img_531
235
+ 2002/07/19/big/img_845
236
+ 2002/08/20/big/img_382
237
+ 2002/07/31/big/img_268
238
+ 2002/08/27/big/img_19705
239
+ 2002/08/02/big/img_830
240
+ 2002/08/23/big/img_250
241
+ 2002/07/20/big/img_777
242
+ 2002/08/21/big/img_879
243
+ 2002/08/26/big/img_20146
244
+ 2002/08/23/big/img_789
245
+ 2002/08/06/big/img_2683
246
+ 2002/08/25/big/img_576
247
+ 2002/08/09/big/img_498
248
+ 2002/08/08/big/img_384
249
+ 2002/08/26/big/img_592
250
+ 2002/07/29/big/img_1470
251
+ 2002/08/21/big/img_452
252
+ 2002/08/30/big/img_18395
253
+ 2002/08/15/big/img_215
254
+ 2002/07/21/big/img_643
255
+ 2002/07/22/big/img_209
256
+ 2003/01/17/big/img_346
257
+ 2002/08/25/big/img_658
258
+ 2002/08/21/big/img_221
259
+ 2002/08/14/big/img_60
260
+ 2003/01/17/big/img_885
261
+ 2003/01/16/big/img_482
262
+ 2002/08/19/big/img_593
263
+ 2002/08/08/big/img_233
264
+ 2002/07/30/big/img_458
265
+ 2002/07/23/big/img_384
266
+ 2003/01/15/big/img_670
267
+ 2003/01/15/big/img_267
268
+ 2002/08/26/big/img_540
269
+ 2002/07/29/big/img_552
270
+ 2002/07/30/big/img_997
271
+ 2003/01/17/big/img_377
272
+ 2002/08/21/big/img_265
273
+ 2002/08/09/big/img_561
274
+ 2002/07/31/big/img_945
275
+ 2002/09/02/big/img_15252
276
+ 2002/08/11/big/img_276
277
+ 2002/07/22/big/img_491
278
+ 2002/07/26/big/img_517
279
+ 2002/08/14/big/img_726
280
+ 2002/08/08/big/img_46
281
+ 2002/08/28/big/img_19458
282
+ 2002/08/06/big/img_2935
283
+ 2002/07/29/big/img_1392
284
+ 2002/08/13/big/img_776
285
+ 2002/08/24/big/img_616
286
+ 2002/08/14/big/img_1065
287
+ 2002/07/29/big/img_889
288
+ 2002/08/18/big/img_188
289
+ 2002/08/07/big/img_1453
290
+ 2002/08/02/big/img_760
291
+ 2002/07/28/big/img_416
292
+ 2002/08/07/big/img_1393
293
+ 2002/08/26/big/img_292
294
+ 2002/08/26/big/img_301
295
+ 2003/01/13/big/img_195
296
+ 2002/07/26/big/img_532
297
+ 2002/08/20/big/img_550
298
+ 2002/08/05/big/img_3658
299
+ 2002/08/26/big/img_738
300
+ 2002/09/02/big/img_15750
301
+ 2003/01/17/big/img_451
302
+ 2002/07/23/big/img_339
303
+ 2002/08/16/big/img_637
304
+ 2002/08/14/big/img_748
305
+ 2002/08/06/big/img_2739
306
+ 2002/07/25/big/img_482
307
+ 2002/08/19/big/img_191
308
+ 2002/08/26/big/img_537
309
+ 2003/01/15/big/img_716
310
+ 2003/01/15/big/img_767
311
+ 2002/08/02/big/img_452
312
+ 2002/08/08/big/img_1011
313
+ 2002/08/10/big/img_144
314
+ 2003/01/14/big/img_122
315
+ 2002/07/24/big/img_586
316
+ 2002/07/24/big/img_762
317
+ 2002/08/20/big/img_369
318
+ 2002/07/30/big/img_146
319
+ 2002/08/23/big/img_396
320
+ 2003/01/15/big/img_200
321
+ 2002/08/15/big/img_1183
322
+ 2003/01/14/big/img_698
323
+ 2002/08/09/big/img_792
324
+ 2002/08/06/big/img_2347
325
+ 2002/07/31/big/img_911
326
+ 2002/08/26/big/img_722
327
+ 2002/08/23/big/img_621
328
+ 2002/08/05/big/img_3790
329
+ 2003/01/13/big/img_633
330
+ 2002/08/09/big/img_224
331
+ 2002/07/24/big/img_454
332
+ 2002/07/21/big/img_202
333
+ 2002/08/02/big/img_630
334
+ 2002/08/30/big/img_18315
335
+ 2002/07/19/big/img_491
336
+ 2002/09/01/big/img_16456
337
+ 2002/08/09/big/img_242
338
+ 2002/07/25/big/img_595
339
+ 2002/07/22/big/img_522
340
+ 2002/08/01/big/img_1593
341
+ 2002/07/29/big/img_336
342
+ 2002/08/15/big/img_448
343
+ 2002/08/28/big/img_19281
344
+ 2002/07/29/big/img_342
345
+ 2002/08/12/big/img_78
346
+ 2003/01/14/big/img_525
347
+ 2002/07/28/big/img_147
348
+ 2002/08/11/big/img_353
349
+ 2002/08/22/big/img_513
350
+ 2002/08/04/big/img_721
351
+ 2002/08/17/big/img_247
352
+ 2003/01/14/big/img_891
353
+ 2002/08/20/big/img_853
354
+ 2002/07/19/big/img_414
355
+ 2002/08/01/big/img_1530
356
+ 2003/01/14/big/img_924
357
+ 2002/08/22/big/img_468
358
+ 2002/08/18/big/img_354
359
+ 2002/08/30/big/img_18193
360
+ 2002/08/23/big/img_492
361
+ 2002/08/15/big/img_871
362
+ 2002/08/12/big/img_494
363
+ 2002/08/06/big/img_2470
364
+ 2002/07/23/big/img_923
365
+ 2002/08/26/big/img_155
366
+ 2002/08/08/big/img_669
367
+ 2002/07/23/big/img_404
368
+ 2002/08/28/big/img_19421
369
+ 2002/08/29/big/img_18993
370
+ 2002/08/25/big/img_416
371
+ 2003/01/17/big/img_434
372
+ 2002/07/29/big/img_1370
373
+ 2002/07/28/big/img_483
374
+ 2002/08/11/big/img_50
375
+ 2002/08/10/big/img_404
376
+ 2002/09/02/big/img_15057
377
+ 2003/01/14/big/img_911
378
+ 2002/09/01/big/img_16697
379
+ 2003/01/16/big/img_665
380
+ 2002/09/01/big/img_16708
381
+ 2002/08/22/big/img_612
382
+ 2002/08/28/big/img_19471
383
+ 2002/08/02/big/img_198
384
+ 2003/01/16/big/img_527
385
+ 2002/08/22/big/img_209
386
+ 2002/08/30/big/img_18205
387
+ 2003/01/14/big/img_114
388
+ 2003/01/14/big/img_1028
389
+ 2003/01/16/big/img_894
390
+ 2003/01/14/big/img_837
391
+ 2002/07/30/big/img_9
392
+ 2002/08/06/big/img_2821
393
+ 2002/08/04/big/img_85
394
+ 2003/01/13/big/img_884
395
+ 2002/07/22/big/img_570
396
+ 2002/08/07/big/img_1773
397
+ 2002/07/26/big/img_208
398
+ 2003/01/17/big/img_946
399
+ 2002/07/19/big/img_930
400
+ 2003/01/01/big/img_698
401
+ 2003/01/17/big/img_612
402
+ 2002/07/19/big/img_372
403
+ 2002/07/30/big/img_721
404
+ 2003/01/14/big/img_649
405
+ 2002/08/19/big/img_4
406
+ 2002/07/25/big/img_1024
407
+ 2003/01/15/big/img_601
408
+ 2002/08/30/big/img_18470
409
+ 2002/07/22/big/img_29
410
+ 2002/08/07/big/img_1686
411
+ 2002/07/20/big/img_294
412
+ 2002/08/14/big/img_800
413
+ 2002/08/19/big/img_353
414
+ 2002/08/19/big/img_350
415
+ 2002/08/05/big/img_3392
416
+ 2002/08/09/big/img_622
417
+ 2003/01/15/big/img_236
418
+ 2002/08/11/big/img_643
419
+ 2002/08/05/big/img_3458
420
+ 2002/08/12/big/img_413
421
+ 2002/08/22/big/img_415
422
+ 2002/08/13/big/img_635
423
+ 2002/08/07/big/img_1198
424
+ 2002/08/04/big/img_873
425
+ 2002/08/12/big/img_407
426
+ 2003/01/15/big/img_346
427
+ 2002/08/02/big/img_275
428
+ 2002/08/17/big/img_997
429
+ 2002/08/21/big/img_958
430
+ 2002/08/20/big/img_579
431
+ 2002/07/29/big/img_142
432
+ 2003/01/14/big/img_1115
433
+ 2002/08/16/big/img_365
434
+ 2002/07/29/big/img_1414
435
+ 2002/08/17/big/img_489
436
+ 2002/08/13/big/img_1010
437
+ 2002/07/31/big/img_276
438
+ 2002/07/25/big/img_1000
439
+ 2002/08/23/big/img_524
440
+ 2002/08/28/big/img_19147
441
+ 2003/01/13/big/img_433
442
+ 2002/08/20/big/img_205
443
+ 2003/01/01/big/img_458
444
+ 2002/07/29/big/img_1449
445
+ 2003/01/16/big/img_696
446
+ 2002/08/28/big/img_19296
447
+ 2002/08/29/big/img_18688
448
+ 2002/08/21/big/img_767
449
+ 2002/08/20/big/img_532
450
+ 2002/08/26/big/img_187
451
+ 2002/07/26/big/img_183
452
+ 2002/07/27/big/img_890
453
+ 2003/01/13/big/img_576
454
+ 2002/07/30/big/img_15
455
+ 2002/07/31/big/img_889
456
+ 2002/08/31/big/img_17759
457
+ 2003/01/14/big/img_1114
458
+ 2002/07/19/big/img_445
459
+ 2002/08/03/big/img_593
460
+ 2002/07/24/big/img_750
461
+ 2002/07/30/big/img_133
462
+ 2002/08/25/big/img_671
463
+ 2002/07/20/big/img_351
464
+ 2002/08/31/big/img_17276
465
+ 2002/08/05/big/img_3231
466
+ 2002/09/02/big/img_15882
467
+ 2002/08/14/big/img_115
468
+ 2002/08/02/big/img_1148
469
+ 2002/07/25/big/img_936
470
+ 2002/07/31/big/img_639
471
+ 2002/08/04/big/img_427
472
+ 2002/08/22/big/img_843
473
+ 2003/01/17/big/img_17
474
+ 2003/01/13/big/img_690
475
+ 2002/08/13/big/img_472
476
+ 2002/08/09/big/img_425
477
+ 2002/08/05/big/img_3450
478
+ 2003/01/17/big/img_439
479
+ 2002/08/13/big/img_539
480
+ 2002/07/28/big/img_35
481
+ 2002/08/16/big/img_241
482
+ 2002/08/06/big/img_2898
483
+ 2003/01/16/big/img_429
484
+ 2002/08/05/big/img_3817
485
+ 2002/08/27/big/img_19919
486
+ 2002/07/19/big/img_422
487
+ 2002/08/15/big/img_560
488
+ 2002/07/23/big/img_750
489
+ 2002/07/30/big/img_353
490
+ 2002/08/05/big/img_43
491
+ 2002/08/23/big/img_305
492
+ 2002/08/01/big/img_2137
493
+ 2002/08/30/big/img_18097
494
+ 2002/08/01/big/img_1389
495
+ 2002/08/02/big/img_308
496
+ 2003/01/14/big/img_652
497
+ 2002/08/01/big/img_1798
498
+ 2003/01/14/big/img_732
499
+ 2003/01/16/big/img_294
500
+ 2002/08/26/big/img_213
501
+ 2002/07/24/big/img_842
502
+ 2003/01/13/big/img_630
503
+ 2003/01/13/big/img_634
504
+ 2002/08/06/big/img_2285
505
+ 2002/08/01/big/img_2162
506
+ 2002/08/30/big/img_18134
507
+ 2002/08/02/big/img_1045
508
+ 2002/08/01/big/img_2143
509
+ 2002/07/25/big/img_135
510
+ 2002/07/20/big/img_645
511
+ 2002/08/05/big/img_3666
512
+ 2002/08/14/big/img_523
513
+ 2002/08/04/big/img_425
514
+ 2003/01/14/big/img_137
515
+ 2003/01/01/big/img_176
516
+ 2002/08/15/big/img_505
517
+ 2002/08/24/big/img_386
518
+ 2002/08/05/big/img_3187
519
+ 2002/08/15/big/img_419
520
+ 2003/01/13/big/img_520
521
+ 2002/08/04/big/img_444
522
+ 2002/08/26/big/img_483
523
+ 2002/08/05/big/img_3449
524
+ 2002/08/30/big/img_18409
525
+ 2002/08/28/big/img_19455
526
+ 2002/08/27/big/img_20090
527
+ 2002/07/23/big/img_625
528
+ 2002/08/24/big/img_205
529
+ 2002/08/08/big/img_938
530
+ 2003/01/13/big/img_527
531
+ 2002/08/07/big/img_1712
532
+ 2002/07/24/big/img_801
533
+ 2002/08/09/big/img_579
534
+ 2003/01/14/big/img_41
535
+ 2003/01/15/big/img_1130
536
+ 2002/07/21/big/img_672
537
+ 2002/08/07/big/img_1590
538
+ 2003/01/01/big/img_532
539
+ 2002/08/02/big/img_529
540
+ 2002/08/05/big/img_3591
541
+ 2002/08/23/big/img_5
542
+ 2003/01/14/big/img_882
543
+ 2002/08/28/big/img_19234
544
+ 2002/07/24/big/img_398
545
+ 2003/01/14/big/img_592
546
+ 2002/08/22/big/img_548
547
+ 2002/08/12/big/img_761
548
+ 2003/01/16/big/img_497
549
+ 2002/08/18/big/img_133
550
+ 2002/08/08/big/img_874
551
+ 2002/07/19/big/img_247
552
+ 2002/08/15/big/img_170
553
+ 2002/08/27/big/img_19679
554
+ 2002/08/20/big/img_246
555
+ 2002/08/24/big/img_358
556
+ 2002/07/29/big/img_599
557
+ 2002/08/01/big/img_1555
558
+ 2002/07/30/big/img_491
559
+ 2002/07/30/big/img_371
560
+ 2003/01/16/big/img_682
561
+ 2002/07/25/big/img_619
562
+ 2003/01/15/big/img_587
563
+ 2002/08/02/big/img_1212
564
+ 2002/08/01/big/img_2152
565
+ 2002/07/25/big/img_668
566
+ 2003/01/16/big/img_574
567
+ 2002/08/28/big/img_19464
568
+ 2002/08/11/big/img_536
569
+ 2002/07/24/big/img_201
570
+ 2002/08/05/big/img_3488
571
+ 2002/07/25/big/img_887
572
+ 2002/07/22/big/img_789
573
+ 2002/07/30/big/img_432
574
+ 2002/08/16/big/img_166
575
+ 2002/09/01/big/img_16333
576
+ 2002/07/26/big/img_1010
577
+ 2002/07/21/big/img_793
578
+ 2002/07/22/big/img_720
579
+ 2002/07/31/big/img_337
580
+ 2002/07/27/big/img_185
581
+ 2002/08/23/big/img_440
582
+ 2002/07/31/big/img_801
583
+ 2002/07/25/big/img_478
584
+ 2003/01/14/big/img_171
585
+ 2002/08/07/big/img_1054
586
+ 2002/09/02/big/img_15659
587
+ 2002/07/29/big/img_1348
588
+ 2002/08/09/big/img_337
589
+ 2002/08/26/big/img_684
590
+ 2002/07/31/big/img_537
591
+ 2002/08/15/big/img_808
592
+ 2003/01/13/big/img_740
593
+ 2002/08/07/big/img_1667
594
+ 2002/08/03/big/img_404
595
+ 2002/08/06/big/img_2520
596
+ 2002/07/19/big/img_230
597
+ 2002/07/19/big/img_356
598
+ 2003/01/16/big/img_627
599
+ 2002/08/04/big/img_474
600
+ 2002/07/29/big/img_833
601
+ 2002/07/25/big/img_176
602
+ 2002/08/01/big/img_1684
603
+ 2002/08/21/big/img_643
604
+ 2002/08/27/big/img_19673
605
+ 2002/08/02/big/img_838
606
+ 2002/08/06/big/img_2378
607
+ 2003/01/15/big/img_48
608
+ 2002/07/30/big/img_470
609
+ 2002/08/15/big/img_963
610
+ 2002/08/24/big/img_444
611
+ 2002/08/16/big/img_662
612
+ 2002/08/15/big/img_1209
613
+ 2002/07/24/big/img_25
614
+ 2002/08/06/big/img_2740
615
+ 2002/07/29/big/img_996
616
+ 2002/08/31/big/img_18074
617
+ 2002/08/04/big/img_343
618
+ 2003/01/17/big/img_509
619
+ 2003/01/13/big/img_726
620
+ 2002/08/07/big/img_1466
621
+ 2002/07/26/big/img_307
622
+ 2002/08/10/big/img_598
623
+ 2002/08/13/big/img_890
624
+ 2002/08/14/big/img_997
625
+ 2002/07/19/big/img_392
626
+ 2002/08/02/big/img_475
627
+ 2002/08/29/big/img_19038
628
+ 2002/07/29/big/img_538
629
+ 2002/07/29/big/img_502
630
+ 2002/08/02/big/img_364
631
+ 2002/08/31/big/img_17353
632
+ 2002/08/08/big/img_539
633
+ 2002/08/01/big/img_1449
634
+ 2002/07/22/big/img_363
635
+ 2002/08/02/big/img_90
636
+ 2002/09/01/big/img_16867
637
+ 2002/08/05/big/img_3371
638
+ 2002/07/30/big/img_342
639
+ 2002/08/07/big/img_1363
640
+ 2002/08/22/big/img_790
641
+ 2003/01/15/big/img_404
642
+ 2002/08/05/big/img_3447
643
+ 2002/09/01/big/img_16167
644
+ 2003/01/13/big/img_840
645
+ 2002/08/22/big/img_1001
646
+ 2002/08/09/big/img_431
647
+ 2002/07/27/big/img_618
648
+ 2002/07/31/big/img_741
649
+ 2002/07/30/big/img_964
650
+ 2002/07/25/big/img_86
651
+ 2002/07/29/big/img_275
652
+ 2002/08/21/big/img_921
653
+ 2002/07/26/big/img_892
654
+ 2002/08/21/big/img_663
655
+ 2003/01/13/big/img_567
656
+ 2003/01/14/big/img_719
657
+ 2002/07/28/big/img_251
658
+ 2003/01/15/big/img_1123
659
+ 2002/07/29/big/img_260
660
+ 2002/08/24/big/img_337
661
+ 2002/08/01/big/img_1914
662
+ 2002/08/13/big/img_373
663
+ 2003/01/15/big/img_589
664
+ 2002/08/13/big/img_906
665
+ 2002/07/26/big/img_270
666
+ 2002/08/26/big/img_313
667
+ 2002/08/25/big/img_694
668
+ 2003/01/01/big/img_327
669
+ 2002/07/23/big/img_261
670
+ 2002/08/26/big/img_642
671
+ 2002/07/29/big/img_918
672
+ 2002/07/23/big/img_455
673
+ 2002/07/24/big/img_612
674
+ 2002/07/23/big/img_534
675
+ 2002/07/19/big/img_534
676
+ 2002/07/19/big/img_726
677
+ 2002/08/01/big/img_2146
678
+ 2002/08/02/big/img_543
679
+ 2003/01/16/big/img_777
680
+ 2002/07/30/big/img_484
681
+ 2002/08/13/big/img_1161
682
+ 2002/07/21/big/img_390
683
+ 2002/08/06/big/img_2288
684
+ 2002/08/21/big/img_677
685
+ 2002/08/13/big/img_747
686
+ 2002/08/15/big/img_1248
687
+ 2002/07/31/big/img_416
688
+ 2002/09/02/big/img_15259
689
+ 2002/08/16/big/img_781
690
+ 2002/08/24/big/img_754
691
+ 2002/07/24/big/img_803
692
+ 2002/08/20/big/img_609
693
+ 2002/08/28/big/img_19571
694
+ 2002/09/01/big/img_16140
695
+ 2002/08/26/big/img_769
696
+ 2002/07/20/big/img_588
697
+ 2002/08/02/big/img_898
698
+ 2002/07/21/big/img_466
699
+ 2002/08/14/big/img_1046
700
+ 2002/07/25/big/img_212
701
+ 2002/08/26/big/img_353
702
+ 2002/08/19/big/img_810
703
+ 2002/08/31/big/img_17824
704
+ 2002/08/12/big/img_631
705
+ 2002/07/19/big/img_828
706
+ 2002/07/24/big/img_130
707
+ 2002/08/25/big/img_580
708
+ 2002/07/31/big/img_699
709
+ 2002/07/23/big/img_808
710
+ 2002/07/31/big/img_377
711
+ 2003/01/16/big/img_570
712
+ 2002/09/01/big/img_16254
713
+ 2002/07/21/big/img_471
714
+ 2002/08/01/big/img_1548
715
+ 2002/08/18/big/img_252
716
+ 2002/08/19/big/img_576
717
+ 2002/08/20/big/img_464
718
+ 2002/07/27/big/img_735
719
+ 2002/08/21/big/img_589
720
+ 2003/01/15/big/img_1192
721
+ 2002/08/09/big/img_302
722
+ 2002/07/31/big/img_594
723
+ 2002/08/23/big/img_19
724
+ 2002/08/29/big/img_18819
725
+ 2002/08/19/big/img_293
726
+ 2002/07/30/big/img_331
727
+ 2002/08/23/big/img_607
728
+ 2002/07/30/big/img_363
729
+ 2002/08/16/big/img_766
730
+ 2003/01/13/big/img_481
731
+ 2002/08/06/big/img_2515
732
+ 2002/09/02/big/img_15913
733
+ 2002/09/02/big/img_15827
734
+ 2002/09/02/big/img_15053
735
+ 2002/08/07/big/img_1576
736
+ 2002/07/23/big/img_268
737
+ 2002/08/21/big/img_152
738
+ 2003/01/15/big/img_578
739
+ 2002/07/21/big/img_589
740
+ 2002/07/20/big/img_548
741
+ 2002/08/27/big/img_19693
742
+ 2002/08/31/big/img_17252
743
+ 2002/07/31/big/img_138
744
+ 2002/07/23/big/img_372
745
+ 2002/08/16/big/img_695
746
+ 2002/07/27/big/img_287
747
+ 2002/08/15/big/img_315
748
+ 2002/08/10/big/img_361
749
+ 2002/07/29/big/img_899
750
+ 2002/08/13/big/img_771
751
+ 2002/08/21/big/img_92
752
+ 2003/01/15/big/img_425
753
+ 2003/01/16/big/img_450
754
+ 2002/09/01/big/img_16942
755
+ 2002/08/02/big/img_51
756
+ 2002/09/02/big/img_15379
757
+ 2002/08/24/big/img_147
758
+ 2002/08/30/big/img_18122
759
+ 2002/07/26/big/img_950
760
+ 2002/08/07/big/img_1400
761
+ 2002/08/17/big/img_468
762
+ 2002/08/15/big/img_470
763
+ 2002/07/30/big/img_318
764
+ 2002/07/22/big/img_644
765
+ 2002/08/27/big/img_19732
766
+ 2002/07/23/big/img_601
767
+ 2002/08/26/big/img_398
768
+ 2002/08/21/big/img_428
769
+ 2002/08/06/big/img_2119
770
+ 2002/08/29/big/img_19103
771
+ 2003/01/14/big/img_933
772
+ 2002/08/11/big/img_674
773
+ 2002/08/28/big/img_19420
774
+ 2002/08/03/big/img_418
775
+ 2002/08/17/big/img_312
776
+ 2002/07/25/big/img_1044
777
+ 2003/01/17/big/img_671
778
+ 2002/08/30/big/img_18297
779
+ 2002/07/25/big/img_755
780
+ 2002/07/23/big/img_471
781
+ 2002/08/21/big/img_39
782
+ 2002/07/26/big/img_699
783
+ 2003/01/14/big/img_33
784
+ 2002/07/31/big/img_411
785
+ 2002/08/16/big/img_645
786
+ 2003/01/17/big/img_116
787
+ 2002/09/02/big/img_15903
788
+ 2002/08/20/big/img_120
789
+ 2002/08/22/big/img_176
790
+ 2002/07/29/big/img_1316
791
+ 2002/08/27/big/img_19914
792
+ 2002/07/22/big/img_719
793
+ 2002/08/28/big/img_19239
794
+ 2003/01/13/big/img_385
795
+ 2002/08/08/big/img_525
796
+ 2002/07/19/big/img_782
797
+ 2002/08/13/big/img_843
798
+ 2002/07/30/big/img_107
799
+ 2002/08/11/big/img_752
800
+ 2002/07/29/big/img_383
801
+ 2002/08/26/big/img_249
802
+ 2002/08/29/big/img_18860
803
+ 2002/07/30/big/img_70
804
+ 2002/07/26/big/img_194
805
+ 2002/08/15/big/img_530
806
+ 2002/08/08/big/img_816
807
+ 2002/07/31/big/img_286
808
+ 2003/01/13/big/img_294
809
+ 2002/07/31/big/img_251
810
+ 2002/07/24/big/img_13
811
+ 2002/08/31/big/img_17938
812
+ 2002/07/22/big/img_642
813
+ 2003/01/14/big/img_728
814
+ 2002/08/18/big/img_47
815
+ 2002/08/22/big/img_306
816
+ 2002/08/20/big/img_348
817
+ 2002/08/15/big/img_764
818
+ 2002/08/08/big/img_163
819
+ 2002/07/23/big/img_531
820
+ 2002/07/23/big/img_467
821
+ 2003/01/16/big/img_743
822
+ 2003/01/13/big/img_535
823
+ 2002/08/02/big/img_523
824
+ 2002/08/22/big/img_120
825
+ 2002/08/11/big/img_496
826
+ 2002/08/29/big/img_19075
827
+ 2002/08/08/big/img_465
828
+ 2002/08/09/big/img_790
829
+ 2002/08/19/big/img_588
830
+ 2002/08/23/big/img_407
831
+ 2003/01/17/big/img_435
832
+ 2002/08/24/big/img_398
833
+ 2002/08/27/big/img_19899
834
+ 2003/01/15/big/img_335
835
+ 2002/08/13/big/img_493
836
+ 2002/09/02/big/img_15460
837
+ 2002/07/31/big/img_470
838
+ 2002/08/05/big/img_3550
839
+ 2002/07/28/big/img_123
840
+ 2002/08/01/big/img_1498
841
+ 2002/08/04/big/img_504
842
+ 2003/01/17/big/img_427
843
+ 2002/08/27/big/img_19708
844
+ 2002/07/27/big/img_861
845
+ 2002/07/25/big/img_685
846
+ 2002/07/31/big/img_207
847
+ 2003/01/14/big/img_745
848
+ 2002/08/31/big/img_17756
849
+ 2002/08/24/big/img_288
850
+ 2002/08/18/big/img_181
851
+ 2002/08/10/big/img_520
852
+ 2002/08/25/big/img_705
853
+ 2002/08/23/big/img_226
854
+ 2002/08/04/big/img_727
855
+ 2002/07/24/big/img_625
856
+ 2002/08/28/big/img_19157
857
+ 2002/08/23/big/img_586
858
+ 2002/07/31/big/img_232
859
+ 2003/01/13/big/img_240
860
+ 2003/01/14/big/img_321
861
+ 2003/01/15/big/img_533
862
+ 2002/07/23/big/img_480
863
+ 2002/07/24/big/img_371
864
+ 2002/08/21/big/img_702
865
+ 2002/08/31/big/img_17075
866
+ 2002/09/02/big/img_15278
867
+ 2002/07/29/big/img_246
868
+ 2003/01/15/big/img_829
869
+ 2003/01/15/big/img_1213
870
+ 2003/01/16/big/img_441
871
+ 2002/08/14/big/img_921
872
+ 2002/07/23/big/img_425
873
+ 2002/08/15/big/img_296
874
+ 2002/07/19/big/img_135
875
+ 2002/07/26/big/img_402
876
+ 2003/01/17/big/img_88
877
+ 2002/08/20/big/img_872
878
+ 2002/08/13/big/img_1110
879
+ 2003/01/16/big/img_1040
880
+ 2002/07/23/big/img_9
881
+ 2002/08/13/big/img_700
882
+ 2002/08/16/big/img_371
883
+ 2002/08/27/big/img_19966
884
+ 2003/01/17/big/img_391
885
+ 2002/08/18/big/img_426
886
+ 2002/08/01/big/img_1618
887
+ 2002/07/21/big/img_754
888
+ 2003/01/14/big/img_1101
889
+ 2003/01/16/big/img_1022
890
+ 2002/07/22/big/img_275
891
+ 2002/08/24/big/img_86
892
+ 2002/08/17/big/img_582
893
+ 2003/01/15/big/img_765
894
+ 2003/01/17/big/img_449
895
+ 2002/07/28/big/img_265
896
+ 2003/01/13/big/img_552
897
+ 2002/07/28/big/img_115
898
+ 2003/01/16/big/img_56
899
+ 2002/08/02/big/img_1232
900
+ 2003/01/17/big/img_925
901
+ 2002/07/22/big/img_445
902
+ 2002/07/25/big/img_957
903
+ 2002/07/20/big/img_589
904
+ 2002/08/31/big/img_17107
905
+ 2002/07/29/big/img_483
906
+ 2002/08/14/big/img_1063
907
+ 2002/08/07/big/img_1545
908
+ 2002/08/14/big/img_680
909
+ 2002/09/01/big/img_16694
910
+ 2002/08/14/big/img_257
911
+ 2002/08/11/big/img_726
912
+ 2002/07/26/big/img_681
913
+ 2002/07/25/big/img_481
914
+ 2003/01/14/big/img_737
915
+ 2002/08/28/big/img_19480
916
+ 2003/01/16/big/img_362
917
+ 2002/08/27/big/img_19865
918
+ 2003/01/01/big/img_547
919
+ 2002/09/02/big/img_15074
920
+ 2002/08/01/big/img_1453
921
+ 2002/08/22/big/img_594
922
+ 2002/08/28/big/img_19263
923
+ 2002/08/13/big/img_478
924
+ 2002/07/29/big/img_1358
925
+ 2003/01/14/big/img_1022
926
+ 2002/08/16/big/img_450
927
+ 2002/08/02/big/img_159
928
+ 2002/07/26/big/img_781
929
+ 2003/01/13/big/img_601
930
+ 2002/08/20/big/img_407
931
+ 2002/08/15/big/img_468
932
+ 2002/08/31/big/img_17902
933
+ 2002/08/16/big/img_81
934
+ 2002/07/25/big/img_987
935
+ 2002/07/25/big/img_500
936
+ 2002/08/02/big/img_31
937
+ 2002/08/18/big/img_538
938
+ 2002/08/08/big/img_54
939
+ 2002/07/23/big/img_686
940
+ 2002/07/24/big/img_836
941
+ 2003/01/17/big/img_734
942
+ 2002/08/16/big/img_1055
943
+ 2003/01/16/big/img_521
944
+ 2002/07/25/big/img_612
945
+ 2002/08/22/big/img_778
946
+ 2002/08/03/big/img_251
947
+ 2002/08/12/big/img_436
948
+ 2002/08/23/big/img_705
949
+ 2002/07/28/big/img_243
950
+ 2002/07/25/big/img_1029
951
+ 2002/08/20/big/img_287
952
+ 2002/08/29/big/img_18739
953
+ 2002/08/05/big/img_3272
954
+ 2002/07/27/big/img_214
955
+ 2003/01/14/big/img_5
956
+ 2002/08/01/big/img_1380
957
+ 2002/08/29/big/img_19097
958
+ 2002/07/30/big/img_486
959
+ 2002/08/29/big/img_18707
960
+ 2002/08/10/big/img_559
961
+ 2002/08/15/big/img_365
962
+ 2002/08/09/big/img_525
963
+ 2002/08/10/big/img_689
964
+ 2002/07/25/big/img_502
965
+ 2002/08/03/big/img_667
966
+ 2002/08/10/big/img_855
967
+ 2002/08/10/big/img_706
968
+ 2002/08/18/big/img_603
969
+ 2003/01/16/big/img_1055
970
+ 2002/08/31/big/img_17890
971
+ 2002/08/15/big/img_761
972
+ 2003/01/15/big/img_489
973
+ 2002/08/26/big/img_351
974
+ 2002/08/01/big/img_1772
975
+ 2002/08/31/big/img_17729
976
+ 2002/07/25/big/img_609
977
+ 2003/01/13/big/img_539
978
+ 2002/07/27/big/img_686
979
+ 2002/07/31/big/img_311
980
+ 2002/08/22/big/img_799
981
+ 2003/01/16/big/img_936
982
+ 2002/08/31/big/img_17813
983
+ 2002/08/04/big/img_862
984
+ 2002/08/09/big/img_332
985
+ 2002/07/20/big/img_148
986
+ 2002/08/12/big/img_426
987
+ 2002/07/24/big/img_69
988
+ 2002/07/27/big/img_685
989
+ 2002/08/02/big/img_480
990
+ 2002/08/26/big/img_154
991
+ 2002/07/24/big/img_598
992
+ 2002/08/01/big/img_1881
993
+ 2002/08/20/big/img_667
994
+ 2003/01/14/big/img_495
995
+ 2002/07/21/big/img_744
996
+ 2002/07/30/big/img_150
997
+ 2002/07/23/big/img_924
998
+ 2002/08/08/big/img_272
999
+ 2002/07/23/big/img_310
1000
+ 2002/07/25/big/img_1011
1001
+ 2002/09/02/big/img_15725
1002
+ 2002/07/19/big/img_814
1003
+ 2002/08/20/big/img_936
1004
+ 2002/07/25/big/img_85
1005
+ 2002/08/24/big/img_662
1006
+ 2002/08/09/big/img_495
1007
+ 2003/01/15/big/img_196
1008
+ 2002/08/16/big/img_707
1009
+ 2002/08/28/big/img_19370
1010
+ 2002/08/06/big/img_2366
1011
+ 2002/08/06/big/img_3012
1012
+ 2002/08/01/big/img_1452
1013
+ 2002/07/31/big/img_742
1014
+ 2002/07/27/big/img_914
1015
+ 2003/01/13/big/img_290
1016
+ 2002/07/31/big/img_288
1017
+ 2002/08/02/big/img_171
1018
+ 2002/08/22/big/img_191
1019
+ 2002/07/27/big/img_1066
1020
+ 2002/08/12/big/img_383
1021
+ 2003/01/17/big/img_1018
1022
+ 2002/08/01/big/img_1785
1023
+ 2002/08/11/big/img_390
1024
+ 2002/08/27/big/img_20037
1025
+ 2002/08/12/big/img_38
1026
+ 2003/01/15/big/img_103
1027
+ 2002/08/26/big/img_31
1028
+ 2002/08/18/big/img_660
1029
+ 2002/07/22/big/img_694
1030
+ 2002/08/15/big/img_24
1031
+ 2002/07/27/big/img_1077
1032
+ 2002/08/01/big/img_1943
1033
+ 2002/07/22/big/img_292
1034
+ 2002/09/01/big/img_16857
1035
+ 2002/07/22/big/img_892
1036
+ 2003/01/14/big/img_46
1037
+ 2002/08/09/big/img_469
1038
+ 2002/08/09/big/img_414
1039
+ 2003/01/16/big/img_40
1040
+ 2002/08/28/big/img_19231
1041
+ 2002/07/27/big/img_978
1042
+ 2002/07/23/big/img_475
1043
+ 2002/07/25/big/img_92
1044
+ 2002/08/09/big/img_799
1045
+ 2002/07/25/big/img_491
1046
+ 2002/08/03/big/img_654
1047
+ 2003/01/15/big/img_687
1048
+ 2002/08/11/big/img_478
1049
+ 2002/08/07/big/img_1664
1050
+ 2002/08/20/big/img_362
1051
+ 2002/08/01/big/img_1298
1052
+ 2003/01/13/big/img_500
1053
+ 2002/08/06/big/img_2896
1054
+ 2002/08/30/big/img_18529
1055
+ 2002/08/16/big/img_1020
1056
+ 2002/07/29/big/img_892
1057
+ 2002/08/29/big/img_18726
1058
+ 2002/07/21/big/img_453
1059
+ 2002/08/17/big/img_437
1060
+ 2002/07/19/big/img_665
1061
+ 2002/07/22/big/img_440
1062
+ 2002/07/19/big/img_582
1063
+ 2002/07/21/big/img_233
1064
+ 2003/01/01/big/img_82
1065
+ 2002/07/25/big/img_341
1066
+ 2002/07/29/big/img_864
1067
+ 2002/08/02/big/img_276
1068
+ 2002/08/29/big/img_18654
1069
+ 2002/07/27/big/img_1024
1070
+ 2002/08/19/big/img_373
1071
+ 2003/01/15/big/img_241
1072
+ 2002/07/25/big/img_84
1073
+ 2002/08/13/big/img_834
1074
+ 2002/08/10/big/img_511
1075
+ 2002/08/01/big/img_1627
1076
+ 2002/08/08/big/img_607
1077
+ 2002/08/06/big/img_2083
1078
+ 2002/08/01/big/img_1486
1079
+ 2002/08/08/big/img_700
1080
+ 2002/08/01/big/img_1954
1081
+ 2002/08/21/big/img_54
1082
+ 2002/07/30/big/img_847
1083
+ 2002/08/28/big/img_19169
1084
+ 2002/07/21/big/img_549
1085
+ 2002/08/03/big/img_693
1086
+ 2002/07/31/big/img_1002
1087
+ 2003/01/14/big/img_1035
1088
+ 2003/01/16/big/img_622
1089
+ 2002/07/30/big/img_1201
1090
+ 2002/08/10/big/img_444
1091
+ 2002/07/31/big/img_374
1092
+ 2002/08/21/big/img_301
1093
+ 2002/08/13/big/img_1095
1094
+ 2003/01/13/big/img_288
1095
+ 2002/07/25/big/img_232
1096
+ 2003/01/13/big/img_967
1097
+ 2002/08/26/big/img_360
1098
+ 2002/08/05/big/img_67
1099
+ 2002/08/29/big/img_18969
1100
+ 2002/07/28/big/img_16
1101
+ 2002/08/16/big/img_515
1102
+ 2002/07/20/big/img_708
1103
+ 2002/08/18/big/img_178
1104
+ 2003/01/15/big/img_509
1105
+ 2002/07/25/big/img_430
1106
+ 2002/08/21/big/img_738
1107
+ 2002/08/16/big/img_886
1108
+ 2002/09/02/big/img_15605
1109
+ 2002/09/01/big/img_16242
1110
+ 2002/08/24/big/img_711
1111
+ 2002/07/25/big/img_90
1112
+ 2002/08/09/big/img_491
1113
+ 2002/07/30/big/img_534
1114
+ 2003/01/13/big/img_474
1115
+ 2002/08/25/big/img_510
1116
+ 2002/08/15/big/img_555
1117
+ 2002/08/02/big/img_775
1118
+ 2002/07/23/big/img_975
1119
+ 2002/08/19/big/img_229
1120
+ 2003/01/17/big/img_860
1121
+ 2003/01/02/big/img_10
1122
+ 2002/07/23/big/img_542
1123
+ 2002/08/06/big/img_2535
1124
+ 2002/07/22/big/img_37
1125
+ 2002/08/06/big/img_2342
1126
+ 2002/08/25/big/img_515
1127
+ 2002/08/25/big/img_336
1128
+ 2002/08/18/big/img_837
1129
+ 2002/08/21/big/img_616
1130
+ 2003/01/17/big/img_24
1131
+ 2002/07/26/big/img_936
1132
+ 2002/08/14/big/img_896
1133
+ 2002/07/29/big/img_465
1134
+ 2002/07/31/big/img_543
1135
+ 2002/08/01/big/img_1411
1136
+ 2002/08/02/big/img_423
1137
+ 2002/08/21/big/img_44
1138
+ 2002/07/31/big/img_11
1139
+ 2003/01/15/big/img_628
1140
+ 2003/01/15/big/img_605
1141
+ 2002/07/30/big/img_571
1142
+ 2002/07/23/big/img_428
1143
+ 2002/08/15/big/img_942
1144
+ 2002/07/26/big/img_531
1145
+ 2003/01/16/big/img_59
1146
+ 2002/08/02/big/img_410
1147
+ 2002/07/31/big/img_230
1148
+ 2002/08/19/big/img_806
1149
+ 2003/01/14/big/img_462
1150
+ 2002/08/16/big/img_370
1151
+ 2002/08/13/big/img_380
1152
+ 2002/08/16/big/img_932
1153
+ 2002/07/19/big/img_393
1154
+ 2002/08/20/big/img_764
1155
+ 2002/08/15/big/img_616
1156
+ 2002/07/26/big/img_267
1157
+ 2002/07/27/big/img_1069
1158
+ 2002/08/14/big/img_1041
1159
+ 2003/01/13/big/img_594
1160
+ 2002/09/01/big/img_16845
1161
+ 2002/08/09/big/img_229
1162
+ 2003/01/16/big/img_639
1163
+ 2002/08/19/big/img_398
1164
+ 2002/08/18/big/img_978
1165
+ 2002/08/24/big/img_296
1166
+ 2002/07/29/big/img_415
1167
+ 2002/07/30/big/img_923
1168
+ 2002/08/18/big/img_575
1169
+ 2002/08/22/big/img_182
1170
+ 2002/07/25/big/img_806
1171
+ 2002/07/22/big/img_49
1172
+ 2002/07/29/big/img_989
1173
+ 2003/01/17/big/img_789
1174
+ 2003/01/15/big/img_503
1175
+ 2002/09/01/big/img_16062
1176
+ 2003/01/17/big/img_794
1177
+ 2002/08/15/big/img_564
1178
+ 2003/01/15/big/img_222
1179
+ 2002/08/01/big/img_1656
1180
+ 2003/01/13/big/img_432
1181
+ 2002/07/19/big/img_426
1182
+ 2002/08/17/big/img_244
1183
+ 2002/08/13/big/img_805
1184
+ 2002/09/02/big/img_15067
1185
+ 2002/08/11/big/img_58
1186
+ 2002/08/22/big/img_636
1187
+ 2002/07/22/big/img_416
1188
+ 2002/08/13/big/img_836
1189
+ 2002/08/26/big/img_363
1190
+ 2002/07/30/big/img_917
1191
+ 2003/01/14/big/img_206
1192
+ 2002/08/12/big/img_311
1193
+ 2002/08/31/big/img_17623
1194
+ 2002/07/29/big/img_661
1195
+ 2003/01/13/big/img_417
1196
+ 2002/08/02/big/img_463
1197
+ 2002/08/02/big/img_669
1198
+ 2002/08/26/big/img_670
1199
+ 2002/08/02/big/img_375
1200
+ 2002/07/19/big/img_209
1201
+ 2002/08/08/big/img_115
1202
+ 2002/08/21/big/img_399
1203
+ 2002/08/20/big/img_911
1204
+ 2002/08/07/big/img_1212
1205
+ 2002/08/20/big/img_578
1206
+ 2002/08/22/big/img_554
1207
+ 2002/08/21/big/img_484
1208
+ 2002/07/25/big/img_450
1209
+ 2002/08/03/big/img_542
1210
+ 2002/08/15/big/img_561
1211
+ 2002/07/23/big/img_360
1212
+ 2002/08/30/big/img_18137
1213
+ 2002/07/25/big/img_250
1214
+ 2002/08/03/big/img_647
1215
+ 2002/08/20/big/img_375
1216
+ 2002/08/14/big/img_387
1217
+ 2002/09/01/big/img_16990
1218
+ 2002/08/28/big/img_19341
1219
+ 2003/01/15/big/img_239
1220
+ 2002/08/20/big/img_528
1221
+ 2002/08/12/big/img_130
1222
+ 2002/09/02/big/img_15108
1223
+ 2003/01/15/big/img_372
1224
+ 2002/08/16/big/img_678
1225
+ 2002/08/04/big/img_623
1226
+ 2002/07/23/big/img_477
1227
+ 2002/08/28/big/img_19590
1228
+ 2003/01/17/big/img_978
1229
+ 2002/09/01/big/img_16692
1230
+ 2002/07/20/big/img_109
1231
+ 2002/08/06/big/img_2660
1232
+ 2003/01/14/big/img_464
1233
+ 2002/08/09/big/img_618
1234
+ 2002/07/22/big/img_722
1235
+ 2002/08/25/big/img_419
1236
+ 2002/08/03/big/img_314
1237
+ 2002/08/25/big/img_40
1238
+ 2002/07/27/big/img_430
1239
+ 2002/08/10/big/img_569
1240
+ 2002/08/23/big/img_398
1241
+ 2002/07/23/big/img_893
1242
+ 2002/08/16/big/img_261
1243
+ 2002/08/06/big/img_2668
1244
+ 2002/07/22/big/img_835
1245
+ 2002/09/02/big/img_15093
1246
+ 2003/01/16/big/img_65
1247
+ 2002/08/21/big/img_448
1248
+ 2003/01/14/big/img_351
1249
+ 2003/01/17/big/img_133
1250
+ 2002/07/28/big/img_493
1251
+ 2003/01/15/big/img_640
1252
+ 2002/09/01/big/img_16880
1253
+ 2002/08/15/big/img_350
1254
+ 2002/08/20/big/img_624
1255
+ 2002/08/25/big/img_604
1256
+ 2002/08/06/big/img_2200
1257
+ 2002/08/23/big/img_290
1258
+ 2002/08/13/big/img_1152
1259
+ 2003/01/14/big/img_251
1260
+ 2002/08/02/big/img_538
1261
+ 2002/08/22/big/img_613
1262
+ 2003/01/13/big/img_351
1263
+ 2002/08/18/big/img_368
1264
+ 2002/07/23/big/img_392
1265
+ 2002/07/25/big/img_198
1266
+ 2002/07/25/big/img_418
1267
+ 2002/08/26/big/img_614
1268
+ 2002/07/23/big/img_405
1269
+ 2003/01/14/big/img_445
1270
+ 2002/07/25/big/img_326
1271
+ 2002/08/10/big/img_734
1272
+ 2003/01/14/big/img_530
1273
+ 2002/08/08/big/img_561
1274
+ 2002/08/29/big/img_18990
1275
+ 2002/08/10/big/img_576
1276
+ 2002/07/29/big/img_1494
1277
+ 2002/07/19/big/img_198
1278
+ 2002/08/10/big/img_562
1279
+ 2002/07/22/big/img_901
1280
+ 2003/01/14/big/img_37
1281
+ 2002/09/02/big/img_15629
1282
+ 2003/01/14/big/img_58
1283
+ 2002/08/01/big/img_1364
1284
+ 2002/07/27/big/img_636
1285
+ 2003/01/13/big/img_241
1286
+ 2002/09/01/big/img_16988
1287
+ 2003/01/13/big/img_560
1288
+ 2002/08/09/big/img_533
1289
+ 2002/07/31/big/img_249
1290
+ 2003/01/17/big/img_1007
1291
+ 2002/07/21/big/img_64
1292
+ 2003/01/13/big/img_537
1293
+ 2003/01/15/big/img_606
1294
+ 2002/08/18/big/img_651
1295
+ 2002/08/24/big/img_405
1296
+ 2002/07/26/big/img_837
1297
+ 2002/08/09/big/img_562
1298
+ 2002/08/01/big/img_1983
1299
+ 2002/08/03/big/img_514
1300
+ 2002/07/29/big/img_314
1301
+ 2002/08/12/big/img_493
1302
+ 2003/01/14/big/img_121
1303
+ 2003/01/14/big/img_479
1304
+ 2002/08/04/big/img_410
1305
+ 2002/07/22/big/img_607
1306
+ 2003/01/17/big/img_417
1307
+ 2002/07/20/big/img_547
1308
+ 2002/08/13/big/img_396
1309
+ 2002/08/31/big/img_17538
1310
+ 2002/08/13/big/img_187
1311
+ 2002/08/12/big/img_328
1312
+ 2003/01/14/big/img_569
1313
+ 2002/07/27/big/img_1081
1314
+ 2002/08/14/big/img_504
1315
+ 2002/08/23/big/img_785
1316
+ 2002/07/26/big/img_339
1317
+ 2002/08/07/big/img_1156
1318
+ 2002/08/07/big/img_1456
1319
+ 2002/08/23/big/img_378
1320
+ 2002/08/27/big/img_19719
1321
+ 2002/07/31/big/img_39
1322
+ 2002/07/31/big/img_883
1323
+ 2003/01/14/big/img_676
1324
+ 2002/07/29/big/img_214
1325
+ 2002/07/26/big/img_669
1326
+ 2002/07/25/big/img_202
1327
+ 2002/08/08/big/img_259
1328
+ 2003/01/17/big/img_943
1329
+ 2003/01/15/big/img_512
1330
+ 2002/08/05/big/img_3295
1331
+ 2002/08/27/big/img_19685
1332
+ 2002/08/08/big/img_277
1333
+ 2002/08/30/big/img_18154
1334
+ 2002/07/22/big/img_663
1335
+ 2002/08/29/big/img_18914
1336
+ 2002/07/31/big/img_908
1337
+ 2002/08/27/big/img_19926
1338
+ 2003/01/13/big/img_791
1339
+ 2003/01/15/big/img_827
1340
+ 2002/08/18/big/img_878
1341
+ 2002/08/14/big/img_670
1342
+ 2002/07/20/big/img_182
1343
+ 2002/08/15/big/img_291
1344
+ 2002/08/06/big/img_2600
1345
+ 2002/07/23/big/img_587
1346
+ 2002/08/14/big/img_577
1347
+ 2003/01/15/big/img_585
1348
+ 2002/07/30/big/img_310
1349
+ 2002/08/03/big/img_658
1350
+ 2002/08/10/big/img_157
1351
+ 2002/08/19/big/img_811
1352
+ 2002/07/29/big/img_1318
1353
+ 2002/08/04/big/img_104
1354
+ 2002/07/30/big/img_332
1355
+ 2002/07/24/big/img_789
1356
+ 2002/07/29/big/img_516
1357
+ 2002/07/23/big/img_843
1358
+ 2002/08/01/big/img_1528
1359
+ 2002/08/13/big/img_798
1360
+ 2002/08/07/big/img_1729
1361
+ 2002/08/28/big/img_19448
1362
+ 2003/01/16/big/img_95
1363
+ 2002/08/12/big/img_473
1364
+ 2002/07/27/big/img_269
1365
+ 2003/01/16/big/img_621
1366
+ 2002/07/29/big/img_772
1367
+ 2002/07/24/big/img_171
1368
+ 2002/07/19/big/img_429
1369
+ 2002/08/07/big/img_1933
1370
+ 2002/08/27/big/img_19629
1371
+ 2002/08/05/big/img_3688
1372
+ 2002/08/07/big/img_1691
1373
+ 2002/07/23/big/img_600
1374
+ 2002/07/29/big/img_666
1375
+ 2002/08/25/big/img_566
1376
+ 2002/08/06/big/img_2659
1377
+ 2002/08/29/big/img_18929
1378
+ 2002/08/16/big/img_407
1379
+ 2002/08/18/big/img_774
1380
+ 2002/08/19/big/img_249
1381
+ 2002/08/06/big/img_2427
1382
+ 2002/08/29/big/img_18899
1383
+ 2002/08/01/big/img_1818
1384
+ 2002/07/31/big/img_108
1385
+ 2002/07/29/big/img_500
1386
+ 2002/08/11/big/img_115
1387
+ 2002/07/19/big/img_521
1388
+ 2002/08/02/big/img_1163
1389
+ 2002/07/22/big/img_62
1390
+ 2002/08/13/big/img_466
1391
+ 2002/08/21/big/img_956
1392
+ 2002/08/23/big/img_602
1393
+ 2002/08/20/big/img_858
1394
+ 2002/07/25/big/img_690
1395
+ 2002/07/19/big/img_130
1396
+ 2002/08/04/big/img_874
1397
+ 2002/07/26/big/img_489
1398
+ 2002/07/22/big/img_548
1399
+ 2002/08/10/big/img_191
1400
+ 2002/07/25/big/img_1051
1401
+ 2002/08/18/big/img_473
1402
+ 2002/08/12/big/img_755
1403
+ 2002/08/18/big/img_413
1404
+ 2002/08/08/big/img_1044
1405
+ 2002/08/17/big/img_680
1406
+ 2002/08/26/big/img_235
1407
+ 2002/08/20/big/img_330
1408
+ 2002/08/22/big/img_344
1409
+ 2002/08/09/big/img_593
1410
+ 2002/07/31/big/img_1006
1411
+ 2002/08/14/big/img_337
1412
+ 2002/08/16/big/img_728
1413
+ 2002/07/24/big/img_834
1414
+ 2002/08/04/big/img_552
1415
+ 2002/09/02/big/img_15213
1416
+ 2002/07/25/big/img_725
1417
+ 2002/08/30/big/img_18290
1418
+ 2003/01/01/big/img_475
1419
+ 2002/07/27/big/img_1083
1420
+ 2002/08/29/big/img_18955
1421
+ 2002/08/31/big/img_17232
1422
+ 2002/08/08/big/img_480
1423
+ 2002/08/01/big/img_1311
1424
+ 2002/07/30/big/img_745
1425
+ 2002/08/03/big/img_649
1426
+ 2002/08/12/big/img_193
1427
+ 2002/07/29/big/img_228
1428
+ 2002/07/25/big/img_836
1429
+ 2002/08/20/big/img_400
1430
+ 2002/07/30/big/img_507
1431
+ 2002/09/02/big/img_15072
1432
+ 2002/07/26/big/img_658
1433
+ 2002/07/28/big/img_503
1434
+ 2002/08/05/big/img_3814
1435
+ 2002/08/24/big/img_745
1436
+ 2003/01/13/big/img_817
1437
+ 2002/08/08/big/img_579
1438
+ 2002/07/22/big/img_251
1439
+ 2003/01/13/big/img_689
1440
+ 2002/07/25/big/img_407
1441
+ 2002/08/13/big/img_1050
1442
+ 2002/08/14/big/img_733
1443
+ 2002/07/24/big/img_82
1444
+ 2003/01/17/big/img_288
1445
+ 2003/01/15/big/img_475
1446
+ 2002/08/14/big/img_620
1447
+ 2002/08/21/big/img_167
1448
+ 2002/07/19/big/img_300
1449
+ 2002/07/26/big/img_219
1450
+ 2002/08/01/big/img_1468
1451
+ 2002/07/23/big/img_260
1452
+ 2002/08/09/big/img_555
1453
+ 2002/07/19/big/img_160
1454
+ 2002/08/02/big/img_1060
1455
+ 2003/01/14/big/img_149
1456
+ 2002/08/15/big/img_346
1457
+ 2002/08/24/big/img_597
1458
+ 2002/08/22/big/img_502
1459
+ 2002/08/30/big/img_18228
1460
+ 2002/07/21/big/img_766
1461
+ 2003/01/15/big/img_841
1462
+ 2002/07/24/big/img_516
1463
+ 2002/08/02/big/img_265
1464
+ 2002/08/15/big/img_1243
1465
+ 2003/01/15/big/img_223
1466
+ 2002/08/04/big/img_236
1467
+ 2002/07/22/big/img_309
1468
+ 2002/07/20/big/img_656
1469
+ 2002/07/31/big/img_412
1470
+ 2002/09/01/big/img_16462
1471
+ 2003/01/16/big/img_431
1472
+ 2002/07/22/big/img_793
1473
+ 2002/08/15/big/img_877
1474
+ 2002/07/26/big/img_282
1475
+ 2002/07/25/big/img_529
1476
+ 2002/08/24/big/img_613
1477
+ 2003/01/17/big/img_700
1478
+ 2002/08/06/big/img_2526
1479
+ 2002/08/24/big/img_394
1480
+ 2002/08/21/big/img_521
1481
+ 2002/08/25/big/img_560
1482
+ 2002/07/29/big/img_966
1483
+ 2002/07/25/big/img_448
1484
+ 2003/01/13/big/img_782
1485
+ 2002/08/21/big/img_296
1486
+ 2002/09/01/big/img_16755
1487
+ 2002/08/05/big/img_3552
1488
+ 2002/09/02/big/img_15823
1489
+ 2003/01/14/big/img_193
1490
+ 2002/07/21/big/img_159
1491
+ 2002/08/02/big/img_564
1492
+ 2002/08/16/big/img_300
1493
+ 2002/07/19/big/img_269
1494
+ 2002/08/13/big/img_676
1495
+ 2002/07/28/big/img_57
1496
+ 2002/08/05/big/img_3318
1497
+ 2002/07/31/big/img_218
1498
+ 2002/08/21/big/img_898
1499
+ 2002/07/29/big/img_109
1500
+ 2002/07/19/big/img_854
1501
+ 2002/08/23/big/img_311
1502
+ 2002/08/14/big/img_318
1503
+ 2002/07/25/big/img_523
1504
+ 2002/07/21/big/img_678
1505
+ 2003/01/17/big/img_690
1506
+ 2002/08/28/big/img_19503
1507
+ 2002/08/18/big/img_251
1508
+ 2002/08/22/big/img_672
1509
+ 2002/08/20/big/img_663
1510
+ 2002/08/02/big/img_148
1511
+ 2002/09/02/big/img_15580
1512
+ 2002/07/25/big/img_778
1513
+ 2002/08/14/big/img_565
1514
+ 2002/08/12/big/img_374
1515
+ 2002/08/13/big/img_1018
1516
+ 2002/08/20/big/img_474
1517
+ 2002/08/25/big/img_33
1518
+ 2002/08/02/big/img_1190
1519
+ 2002/08/08/big/img_864
1520
+ 2002/08/14/big/img_1071
1521
+ 2002/08/30/big/img_18103
1522
+ 2002/08/18/big/img_533
1523
+ 2003/01/16/big/img_650
1524
+ 2002/07/25/big/img_108
1525
+ 2002/07/26/big/img_81
1526
+ 2002/07/27/big/img_543
1527
+ 2002/07/29/big/img_521
1528
+ 2003/01/13/big/img_434
1529
+ 2002/08/26/big/img_674
1530
+ 2002/08/06/big/img_2932
1531
+ 2002/08/07/big/img_1262
1532
+ 2003/01/15/big/img_201
1533
+ 2003/01/16/big/img_673
1534
+ 2002/09/02/big/img_15988
1535
+ 2002/07/29/big/img_1306
1536
+ 2003/01/14/big/img_1072
1537
+ 2002/08/30/big/img_18232
1538
+ 2002/08/05/big/img_3711
1539
+ 2002/07/23/big/img_775
1540
+ 2002/08/01/big/img_16
1541
+ 2003/01/16/big/img_630
1542
+ 2002/08/22/big/img_695
1543
+ 2002/08/14/big/img_51
1544
+ 2002/08/14/big/img_782
1545
+ 2002/08/24/big/img_742
1546
+ 2003/01/14/big/img_512
1547
+ 2003/01/15/big/img_1183
1548
+ 2003/01/15/big/img_714
1549
+ 2002/08/01/big/img_2078
1550
+ 2002/07/31/big/img_682
1551
+ 2002/09/02/big/img_15687
1552
+ 2002/07/26/big/img_518
1553
+ 2002/08/27/big/img_19676
1554
+ 2002/09/02/big/img_15969
1555
+ 2002/08/02/big/img_931
1556
+ 2002/08/25/big/img_508
1557
+ 2002/08/29/big/img_18616
1558
+ 2002/07/22/big/img_839
1559
+ 2002/07/28/big/img_313
1560
+ 2003/01/14/big/img_155
1561
+ 2002/08/02/big/img_1105
1562
+ 2002/08/09/big/img_53
1563
+ 2002/08/16/big/img_469
1564
+ 2002/08/15/big/img_502
1565
+ 2002/08/20/big/img_575
1566
+ 2002/07/25/big/img_138
1567
+ 2003/01/16/big/img_579
1568
+ 2002/07/19/big/img_352
1569
+ 2003/01/14/big/img_762
1570
+ 2003/01/01/big/img_588
1571
+ 2002/08/02/big/img_981
1572
+ 2002/08/21/big/img_447
1573
+ 2002/09/01/big/img_16151
1574
+ 2003/01/14/big/img_769
1575
+ 2002/08/23/big/img_461
1576
+ 2002/08/17/big/img_240
1577
+ 2002/09/02/big/img_15220
1578
+ 2002/07/19/big/img_408
1579
+ 2002/09/02/big/img_15496
1580
+ 2002/07/29/big/img_758
1581
+ 2002/08/28/big/img_19392
1582
+ 2002/08/06/big/img_2723
1583
+ 2002/08/31/big/img_17752
1584
+ 2002/08/23/big/img_469
1585
+ 2002/08/13/big/img_515
1586
+ 2002/09/02/big/img_15551
1587
+ 2002/08/03/big/img_462
1588
+ 2002/07/24/big/img_613
1589
+ 2002/07/22/big/img_61
1590
+ 2002/08/08/big/img_171
1591
+ 2002/08/21/big/img_177
1592
+ 2003/01/14/big/img_105
1593
+ 2002/08/02/big/img_1017
1594
+ 2002/08/22/big/img_106
1595
+ 2002/07/27/big/img_542
1596
+ 2002/07/21/big/img_665
1597
+ 2002/07/23/big/img_595
1598
+ 2002/08/04/big/img_657
1599
+ 2002/08/29/big/img_19002
1600
+ 2003/01/15/big/img_550
1601
+ 2002/08/14/big/img_662
1602
+ 2002/07/20/big/img_425
1603
+ 2002/08/30/big/img_18528
1604
+ 2002/07/26/big/img_611
1605
+ 2002/07/22/big/img_849
1606
+ 2002/08/07/big/img_1655
1607
+ 2002/08/21/big/img_638
1608
+ 2003/01/17/big/img_732
1609
+ 2003/01/01/big/img_496
1610
+ 2002/08/18/big/img_713
1611
+ 2002/08/08/big/img_109
1612
+ 2002/07/27/big/img_1008
1613
+ 2002/07/20/big/img_559
1614
+ 2002/08/16/big/img_699
1615
+ 2002/08/31/big/img_17702
1616
+ 2002/07/31/big/img_1013
1617
+ 2002/08/01/big/img_2027
1618
+ 2002/08/02/big/img_1001
1619
+ 2002/08/03/big/img_210
1620
+ 2002/08/01/big/img_2087
1621
+ 2003/01/14/big/img_199
1622
+ 2002/07/29/big/img_48
1623
+ 2002/07/19/big/img_727
1624
+ 2002/08/09/big/img_249
1625
+ 2002/08/04/big/img_632
1626
+ 2002/08/22/big/img_620
1627
+ 2003/01/01/big/img_457
1628
+ 2002/08/05/big/img_3223
1629
+ 2002/07/27/big/img_240
1630
+ 2002/07/25/big/img_797
1631
+ 2002/08/13/big/img_430
1632
+ 2002/07/25/big/img_615
1633
+ 2002/08/12/big/img_28
1634
+ 2002/07/30/big/img_220
1635
+ 2002/07/24/big/img_89
1636
+ 2002/08/21/big/img_357
1637
+ 2002/08/09/big/img_590
1638
+ 2003/01/13/big/img_525
1639
+ 2002/08/17/big/img_818
1640
+ 2003/01/02/big/img_7
1641
+ 2002/07/26/big/img_636
1642
+ 2003/01/13/big/img_1122
1643
+ 2002/07/23/big/img_810
1644
+ 2002/08/20/big/img_888
1645
+ 2002/07/27/big/img_3
1646
+ 2002/08/15/big/img_451
1647
+ 2002/09/02/big/img_15787
1648
+ 2002/07/31/big/img_281
1649
+ 2002/08/05/big/img_3274
1650
+ 2002/08/07/big/img_1254
1651
+ 2002/07/31/big/img_27
1652
+ 2002/08/01/big/img_1366
1653
+ 2002/07/30/big/img_182
1654
+ 2002/08/27/big/img_19690
1655
+ 2002/07/29/big/img_68
1656
+ 2002/08/23/big/img_754
1657
+ 2002/07/30/big/img_540
1658
+ 2002/08/27/big/img_20063
1659
+ 2002/08/14/big/img_471
1660
+ 2002/08/02/big/img_615
1661
+ 2002/07/30/big/img_186
1662
+ 2002/08/25/big/img_150
1663
+ 2002/07/27/big/img_626
1664
+ 2002/07/20/big/img_225
1665
+ 2003/01/15/big/img_1252
1666
+ 2002/07/19/big/img_367
1667
+ 2003/01/15/big/img_582
1668
+ 2002/08/09/big/img_572
1669
+ 2002/08/08/big/img_428
1670
+ 2003/01/15/big/img_639
1671
+ 2002/08/28/big/img_19245
1672
+ 2002/07/24/big/img_321
1673
+ 2002/08/02/big/img_662
1674
+ 2002/08/08/big/img_1033
1675
+ 2003/01/17/big/img_867
1676
+ 2002/07/22/big/img_652
1677
+ 2003/01/14/big/img_224
1678
+ 2002/08/18/big/img_49
1679
+ 2002/07/26/big/img_46
1680
+ 2002/08/31/big/img_18021
1681
+ 2002/07/25/big/img_151
1682
+ 2002/08/23/big/img_540
1683
+ 2002/08/25/big/img_693
1684
+ 2002/07/23/big/img_340
1685
+ 2002/07/28/big/img_117
1686
+ 2002/09/02/big/img_15768
1687
+ 2002/08/26/big/img_562
1688
+ 2002/07/24/big/img_480
1689
+ 2003/01/15/big/img_341
1690
+ 2002/08/10/big/img_783
1691
+ 2002/08/20/big/img_132
1692
+ 2003/01/14/big/img_370
1693
+ 2002/07/20/big/img_720
1694
+ 2002/08/03/big/img_144
1695
+ 2002/08/20/big/img_538
1696
+ 2002/08/01/big/img_1745
1697
+ 2002/08/11/big/img_683
1698
+ 2002/08/03/big/img_328
1699
+ 2002/08/10/big/img_793
1700
+ 2002/08/14/big/img_689
1701
+ 2002/08/02/big/img_162
1702
+ 2003/01/17/big/img_411
1703
+ 2002/07/31/big/img_361
1704
+ 2002/08/15/big/img_289
1705
+ 2002/08/08/big/img_254
1706
+ 2002/08/15/big/img_996
1707
+ 2002/08/20/big/img_785
1708
+ 2002/07/24/big/img_511
1709
+ 2002/08/06/big/img_2614
1710
+ 2002/08/29/big/img_18733
1711
+ 2002/08/17/big/img_78
1712
+ 2002/07/30/big/img_378
1713
+ 2002/08/31/big/img_17947
1714
+ 2002/08/26/big/img_88
1715
+ 2002/07/30/big/img_558
1716
+ 2002/08/02/big/img_67
1717
+ 2003/01/14/big/img_325
1718
+ 2002/07/29/big/img_1357
1719
+ 2002/07/19/big/img_391
1720
+ 2002/07/30/big/img_307
1721
+ 2003/01/13/big/img_219
1722
+ 2002/07/24/big/img_807
1723
+ 2002/08/23/big/img_543
1724
+ 2002/08/29/big/img_18620
1725
+ 2002/07/22/big/img_769
1726
+ 2002/08/26/big/img_503
1727
+ 2002/07/30/big/img_78
1728
+ 2002/08/14/big/img_1036
1729
+ 2002/08/09/big/img_58
1730
+ 2002/07/24/big/img_616
1731
+ 2002/08/02/big/img_464
1732
+ 2002/07/26/big/img_576
1733
+ 2002/07/22/big/img_273
1734
+ 2003/01/16/big/img_470
1735
+ 2002/07/29/big/img_329
1736
+ 2002/07/30/big/img_1086
1737
+ 2002/07/31/big/img_353
1738
+ 2002/09/02/big/img_15275
1739
+ 2003/01/17/big/img_555
1740
+ 2002/08/26/big/img_212
1741
+ 2002/08/01/big/img_1692
1742
+ 2003/01/15/big/img_600
1743
+ 2002/07/29/big/img_825
1744
+ 2002/08/08/big/img_68
1745
+ 2002/08/10/big/img_719
1746
+ 2002/07/31/big/img_636
1747
+ 2002/07/29/big/img_325
1748
+ 2002/07/21/big/img_515
1749
+ 2002/07/22/big/img_705
1750
+ 2003/01/13/big/img_818
1751
+ 2002/08/09/big/img_486
1752
+ 2002/08/22/big/img_141
1753
+ 2002/07/22/big/img_303
1754
+ 2002/08/09/big/img_393
1755
+ 2002/07/29/big/img_963
1756
+ 2002/08/02/big/img_1215
1757
+ 2002/08/19/big/img_674
1758
+ 2002/08/12/big/img_690
1759
+ 2002/08/21/big/img_637
1760
+ 2002/08/21/big/img_841
1761
+ 2002/08/24/big/img_71
1762
+ 2002/07/25/big/img_596
1763
+ 2002/07/24/big/img_864
1764
+ 2002/08/18/big/img_293
1765
+ 2003/01/14/big/img_657
1766
+ 2002/08/15/big/img_411
1767
+ 2002/08/16/big/img_348
1768
+ 2002/08/05/big/img_3157
1769
+ 2002/07/20/big/img_663
1770
+ 2003/01/13/big/img_654
1771
+ 2003/01/16/big/img_433
1772
+ 2002/08/30/big/img_18200
1773
+ 2002/08/12/big/img_226
1774
+ 2003/01/16/big/img_491
1775
+ 2002/08/08/big/img_666
1776
+ 2002/07/19/big/img_576
1777
+ 2003/01/15/big/img_776
1778
+ 2003/01/16/big/img_899
1779
+ 2002/07/19/big/img_397
1780
+ 2002/08/14/big/img_44
1781
+ 2003/01/15/big/img_762
1782
+ 2002/08/02/big/img_982
1783
+ 2002/09/02/big/img_15234
1784
+ 2002/08/17/big/img_556
1785
+ 2002/08/21/big/img_410
1786
+ 2002/08/21/big/img_386
1787
+ 2002/07/19/big/img_690
1788
+ 2002/08/05/big/img_3052
1789
+ 2002/08/14/big/img_219
1790
+ 2002/08/16/big/img_273
1791
+ 2003/01/15/big/img_752
1792
+ 2002/08/08/big/img_184
1793
+ 2002/07/31/big/img_743
1794
+ 2002/08/23/big/img_338
1795
+ 2003/01/14/big/img_1055
1796
+ 2002/08/05/big/img_3405
1797
+ 2003/01/15/big/img_17
1798
+ 2002/08/03/big/img_141
1799
+ 2002/08/14/big/img_549
1800
+ 2002/07/27/big/img_1034
1801
+ 2002/07/31/big/img_932
1802
+ 2002/08/30/big/img_18487
1803
+ 2002/09/02/big/img_15814
1804
+ 2002/08/01/big/img_2086
1805
+ 2002/09/01/big/img_16535
1806
+ 2002/07/22/big/img_500
1807
+ 2003/01/13/big/img_400
1808
+ 2002/08/25/big/img_607
1809
+ 2002/08/30/big/img_18384
1810
+ 2003/01/14/big/img_951
1811
+ 2002/08/13/big/img_1150
1812
+ 2002/08/08/big/img_1022
1813
+ 2002/08/10/big/img_428
1814
+ 2002/08/28/big/img_19242
1815
+ 2002/08/05/big/img_3098
1816
+ 2002/07/23/big/img_400
1817
+ 2002/08/26/big/img_365
1818
+ 2002/07/20/big/img_318
1819
+ 2002/08/13/big/img_740
1820
+ 2003/01/16/big/img_37
1821
+ 2002/08/26/big/img_274
1822
+ 2002/08/02/big/img_205
1823
+ 2002/08/21/big/img_695
1824
+ 2002/08/06/big/img_2289
1825
+ 2002/08/20/big/img_794
1826
+ 2002/08/18/big/img_438
1827
+ 2002/08/07/big/img_1380
1828
+ 2002/08/02/big/img_737
1829
+ 2002/08/07/big/img_1651
1830
+ 2002/08/15/big/img_1238
1831
+ 2002/08/01/big/img_1681
1832
+ 2002/08/06/big/img_3017
1833
+ 2002/07/23/big/img_706
1834
+ 2002/07/31/big/img_392
1835
+ 2002/08/09/big/img_539
1836
+ 2002/07/29/big/img_835
1837
+ 2002/08/26/big/img_723
1838
+ 2002/08/28/big/img_19235
1839
+ 2003/01/16/big/img_353
1840
+ 2002/08/10/big/img_150
1841
+ 2002/08/29/big/img_19025
1842
+ 2002/08/21/big/img_310
1843
+ 2002/08/10/big/img_823
1844
+ 2002/07/26/big/img_981
1845
+ 2002/08/11/big/img_288
1846
+ 2002/08/19/big/img_534
1847
+ 2002/08/21/big/img_300
1848
+ 2002/07/31/big/img_49
1849
+ 2002/07/30/big/img_469
1850
+ 2002/08/28/big/img_19197
1851
+ 2002/08/25/big/img_205
1852
+ 2002/08/10/big/img_390
1853
+ 2002/08/23/big/img_291
1854
+ 2002/08/26/big/img_230
1855
+ 2002/08/18/big/img_76
1856
+ 2002/07/23/big/img_409
1857
+ 2002/08/14/big/img_1053
1858
+ 2003/01/14/big/img_291
1859
+ 2002/08/10/big/img_503
1860
+ 2002/08/27/big/img_19928
1861
+ 2002/08/03/big/img_563
1862
+ 2002/08/17/big/img_250
1863
+ 2002/08/06/big/img_2381
1864
+ 2002/08/17/big/img_948
1865
+ 2002/08/06/big/img_2710
1866
+ 2002/07/22/big/img_696
1867
+ 2002/07/31/big/img_670
1868
+ 2002/08/12/big/img_594
1869
+ 2002/07/29/big/img_624
1870
+ 2003/01/17/big/img_934
1871
+ 2002/08/03/big/img_584
1872
+ 2002/08/22/big/img_1003
1873
+ 2002/08/05/big/img_3396
1874
+ 2003/01/13/big/img_570
1875
+ 2002/08/02/big/img_219
1876
+ 2002/09/02/big/img_15774
1877
+ 2002/08/16/big/img_818
1878
+ 2002/08/23/big/img_402
1879
+ 2003/01/14/big/img_552
1880
+ 2002/07/29/big/img_71
1881
+ 2002/08/05/big/img_3592
1882
+ 2002/08/16/big/img_80
1883
+ 2002/07/27/big/img_672
1884
+ 2003/01/13/big/img_470
1885
+ 2003/01/16/big/img_702
1886
+ 2002/09/01/big/img_16130
1887
+ 2002/08/08/big/img_240
1888
+ 2002/09/01/big/img_16338
1889
+ 2002/07/26/big/img_312
1890
+ 2003/01/14/big/img_538
1891
+ 2002/07/20/big/img_695
1892
+ 2002/08/30/big/img_18098
1893
+ 2002/08/25/big/img_259
1894
+ 2002/08/16/big/img_1042
1895
+ 2002/08/09/big/img_837
1896
+ 2002/08/31/big/img_17760
1897
+ 2002/07/31/big/img_14
1898
+ 2002/08/09/big/img_361
1899
+ 2003/01/16/big/img_107
1900
+ 2002/08/14/big/img_124
1901
+ 2002/07/19/big/img_463
1902
+ 2003/01/15/big/img_275
1903
+ 2002/07/25/big/img_1151
1904
+ 2002/07/29/big/img_1501
1905
+ 2002/08/27/big/img_19889
1906
+ 2002/08/29/big/img_18603
1907
+ 2003/01/17/big/img_601
1908
+ 2002/08/25/big/img_355
1909
+ 2002/08/08/big/img_297
1910
+ 2002/08/20/big/img_290
1911
+ 2002/07/31/big/img_195
1912
+ 2003/01/01/big/img_336
1913
+ 2002/08/18/big/img_369
1914
+ 2002/07/25/big/img_621
1915
+ 2002/08/11/big/img_508
1916
+ 2003/01/14/big/img_458
1917
+ 2003/01/15/big/img_795
1918
+ 2002/08/12/big/img_498
1919
+ 2002/08/01/big/img_1734
1920
+ 2002/08/02/big/img_246
1921
+ 2002/08/16/big/img_565
1922
+ 2002/08/11/big/img_475
1923
+ 2002/08/22/big/img_408
1924
+ 2002/07/28/big/img_78
1925
+ 2002/07/21/big/img_81
1926
+ 2003/01/14/big/img_697
1927
+ 2002/08/14/big/img_661
1928
+ 2002/08/15/big/img_507
1929
+ 2002/08/19/big/img_55
1930
+ 2002/07/22/big/img_152
1931
+ 2003/01/14/big/img_470
1932
+ 2002/08/03/big/img_379
1933
+ 2002/08/22/big/img_506
1934
+ 2003/01/16/big/img_966
1935
+ 2002/08/18/big/img_698
1936
+ 2002/08/24/big/img_528
1937
+ 2002/08/23/big/img_10
1938
+ 2002/08/01/big/img_1655
1939
+ 2002/08/22/big/img_953
1940
+ 2002/07/19/big/img_630
1941
+ 2002/07/22/big/img_889
1942
+ 2002/08/16/big/img_351
1943
+ 2003/01/16/big/img_83
1944
+ 2002/07/19/big/img_805
1945
+ 2002/08/14/big/img_704
1946
+ 2002/07/19/big/img_389
1947
+ 2002/08/31/big/img_17765
1948
+ 2002/07/29/big/img_606
1949
+ 2003/01/17/big/img_939
1950
+ 2002/09/02/big/img_15081
1951
+ 2002/08/21/big/img_181
1952
+ 2002/07/29/big/img_1321
1953
+ 2002/07/21/big/img_497
1954
+ 2002/07/20/big/img_539
1955
+ 2002/08/24/big/img_119
1956
+ 2002/08/01/big/img_1281
1957
+ 2002/07/26/big/img_207
1958
+ 2002/07/26/big/img_432
1959
+ 2002/07/27/big/img_1006
1960
+ 2002/08/05/big/img_3087
1961
+ 2002/08/14/big/img_252
1962
+ 2002/08/14/big/img_798
1963
+ 2002/07/24/big/img_538
1964
+ 2002/09/02/big/img_15507
1965
+ 2002/08/08/big/img_901
1966
+ 2003/01/14/big/img_557
1967
+ 2002/08/07/big/img_1819
1968
+ 2002/08/04/big/img_470
1969
+ 2002/08/01/big/img_1504
1970
+ 2002/08/16/big/img_1070
1971
+ 2002/08/16/big/img_372
1972
+ 2002/08/23/big/img_416
1973
+ 2002/08/30/big/img_18208
1974
+ 2002/08/01/big/img_2043
1975
+ 2002/07/22/big/img_385
1976
+ 2002/08/22/big/img_466
1977
+ 2002/08/21/big/img_869
1978
+ 2002/08/28/big/img_19429
1979
+ 2002/08/02/big/img_770
1980
+ 2002/07/23/big/img_433
1981
+ 2003/01/14/big/img_13
1982
+ 2002/07/27/big/img_953
1983
+ 2002/09/02/big/img_15728
1984
+ 2002/08/01/big/img_1361
1985
+ 2002/08/29/big/img_18897
1986
+ 2002/08/26/big/img_534
1987
+ 2002/08/11/big/img_121
1988
+ 2002/08/26/big/img_20130
1989
+ 2002/07/31/big/img_363
1990
+ 2002/08/13/big/img_978
1991
+ 2002/07/25/big/img_835
1992
+ 2002/08/02/big/img_906
1993
+ 2003/01/14/big/img_548
1994
+ 2002/07/30/big/img_80
1995
+ 2002/07/26/big/img_982
1996
+ 2003/01/16/big/img_99
1997
+ 2002/08/19/big/img_362
1998
+ 2002/08/24/big/img_376
1999
+ 2002/08/07/big/img_1264
2000
+ 2002/07/27/big/img_938
2001
+ 2003/01/17/big/img_535
2002
+ 2002/07/26/big/img_457
2003
+ 2002/08/08/big/img_848
2004
+ 2003/01/15/big/img_859
2005
+ 2003/01/15/big/img_622
2006
+ 2002/07/30/big/img_403
2007
+ 2002/07/29/big/img_217
2008
+ 2002/07/26/big/img_891
2009
+ 2002/07/24/big/img_70
2010
+ 2002/08/25/big/img_619
2011
+ 2002/08/05/big/img_3375
2012
+ 2002/08/01/big/img_2160
2013
+ 2002/08/06/big/img_2227
2014
+ 2003/01/14/big/img_117
2015
+ 2002/08/14/big/img_227
2016
+ 2002/08/13/big/img_565
2017
+ 2002/08/19/big/img_625
2018
+ 2002/08/03/big/img_812
2019
+ 2002/07/24/big/img_41
2020
+ 2002/08/16/big/img_235
2021
+ 2002/07/29/big/img_759
2022
+ 2002/07/21/big/img_433
2023
+ 2002/07/29/big/img_190
2024
+ 2003/01/16/big/img_435
2025
+ 2003/01/13/big/img_708
2026
+ 2002/07/30/big/img_57
2027
+ 2002/08/22/big/img_162
2028
+ 2003/01/01/big/img_558
2029
+ 2003/01/15/big/img_604
2030
+ 2002/08/16/big/img_935
2031
+ 2002/08/20/big/img_394
2032
+ 2002/07/28/big/img_465
2033
+ 2002/09/02/big/img_15534
2034
+ 2002/08/16/big/img_87
2035
+ 2002/07/22/big/img_469
2036
+ 2002/08/12/big/img_245
2037
+ 2003/01/13/big/img_236
2038
+ 2002/08/06/big/img_2736
2039
+ 2002/08/03/big/img_348
2040
+ 2003/01/14/big/img_218
2041
+ 2002/07/26/big/img_232
2042
+ 2003/01/15/big/img_244
2043
+ 2002/07/25/big/img_1121
2044
+ 2002/08/01/big/img_1484
2045
+ 2002/07/26/big/img_541
2046
+ 2002/08/07/big/img_1244
2047
+ 2002/07/31/big/img_3
2048
+ 2002/08/30/big/img_18437
2049
+ 2002/08/29/big/img_19094
2050
+ 2002/08/01/big/img_1355
2051
+ 2002/08/19/big/img_338
2052
+ 2002/07/19/big/img_255
2053
+ 2002/07/21/big/img_76
2054
+ 2002/08/25/big/img_199
2055
+ 2002/08/12/big/img_740
2056
+ 2002/07/30/big/img_852
2057
+ 2002/08/15/big/img_599
2058
+ 2002/08/23/big/img_254
2059
+ 2002/08/19/big/img_125
2060
+ 2002/07/24/big/img_2
2061
+ 2002/08/04/big/img_145
2062
+ 2002/08/05/big/img_3137
2063
+ 2002/07/28/big/img_463
2064
+ 2003/01/14/big/img_801
2065
+ 2002/07/23/big/img_366
2066
+ 2002/08/26/big/img_600
2067
+ 2002/08/26/big/img_649
2068
+ 2002/09/02/big/img_15849
2069
+ 2002/07/26/big/img_248
2070
+ 2003/01/13/big/img_200
2071
+ 2002/08/07/big/img_1794
2072
+ 2002/08/31/big/img_17270
2073
+ 2002/08/23/big/img_608
2074
+ 2003/01/13/big/img_837
2075
+ 2002/08/23/big/img_581
2076
+ 2002/08/20/big/img_754
2077
+ 2002/08/18/big/img_183
2078
+ 2002/08/20/big/img_328
2079
+ 2002/07/22/big/img_494
2080
+ 2002/07/29/big/img_399
2081
+ 2002/08/28/big/img_19284
2082
+ 2002/08/08/big/img_566
2083
+ 2002/07/25/big/img_376
2084
+ 2002/07/23/big/img_138
2085
+ 2002/07/25/big/img_435
2086
+ 2002/08/17/big/img_685
2087
+ 2002/07/19/big/img_90
2088
+ 2002/07/20/big/img_716
2089
+ 2002/08/31/big/img_17458
2090
+ 2002/08/26/big/img_461
2091
+ 2002/07/25/big/img_355
2092
+ 2002/08/06/big/img_2152
2093
+ 2002/07/27/big/img_932
2094
+ 2002/07/23/big/img_232
2095
+ 2002/08/08/big/img_1020
2096
+ 2002/07/31/big/img_366
2097
+ 2002/08/06/big/img_2667
2098
+ 2002/08/21/big/img_465
2099
+ 2002/08/15/big/img_305
2100
+ 2002/08/02/big/img_247
2101
+ 2002/07/28/big/img_46
2102
+ 2002/08/27/big/img_19922
2103
+ 2002/08/23/big/img_643
2104
+ 2003/01/13/big/img_624
2105
+ 2002/08/23/big/img_625
2106
+ 2002/08/05/big/img_3787
2107
+ 2003/01/13/big/img_627
2108
+ 2002/09/01/big/img_16381
2109
+ 2002/08/05/big/img_3668
2110
+ 2002/07/21/big/img_535
2111
+ 2002/08/27/big/img_19680
2112
+ 2002/07/22/big/img_413
2113
+ 2002/07/29/big/img_481
2114
+ 2003/01/15/big/img_496
2115
+ 2002/07/23/big/img_701
2116
+ 2002/08/29/big/img_18670
2117
+ 2002/07/28/big/img_319
2118
+ 2003/01/14/big/img_517
2119
+ 2002/07/26/big/img_256
2120
+ 2003/01/16/big/img_593
2121
+ 2002/07/30/big/img_956
2122
+ 2002/07/30/big/img_667
2123
+ 2002/07/25/big/img_100
2124
+ 2002/08/11/big/img_570
2125
+ 2002/07/26/big/img_745
2126
+ 2002/08/04/big/img_834
2127
+ 2002/08/25/big/img_521
2128
+ 2002/08/01/big/img_2148
2129
+ 2002/09/02/big/img_15183
2130
+ 2002/08/22/big/img_514
2131
+ 2002/08/23/big/img_477
2132
+ 2002/07/23/big/img_336
2133
+ 2002/07/26/big/img_481
2134
+ 2002/08/20/big/img_409
2135
+ 2002/07/23/big/img_918
2136
+ 2002/08/09/big/img_474
2137
+ 2002/08/02/big/img_929
2138
+ 2002/08/31/big/img_17932
2139
+ 2002/08/19/big/img_161
2140
+ 2002/08/09/big/img_667
2141
+ 2002/07/31/big/img_805
2142
+ 2002/09/02/big/img_15678
2143
+ 2002/08/31/big/img_17509
2144
+ 2002/08/29/big/img_18998
2145
+ 2002/07/23/big/img_301
2146
+ 2002/08/07/big/img_1612
2147
+ 2002/08/06/big/img_2472
2148
+ 2002/07/23/big/img_466
2149
+ 2002/08/27/big/img_19634
2150
+ 2003/01/16/big/img_16
2151
+ 2002/08/14/big/img_193
2152
+ 2002/08/21/big/img_340
2153
+ 2002/08/27/big/img_19799
2154
+ 2002/08/01/big/img_1345
2155
+ 2002/08/07/big/img_1448
2156
+ 2002/08/11/big/img_324
2157
+ 2003/01/16/big/img_754
2158
+ 2002/08/13/big/img_418
2159
+ 2003/01/16/big/img_544
2160
+ 2002/08/19/big/img_135
2161
+ 2002/08/10/big/img_455
2162
+ 2002/08/10/big/img_693
2163
+ 2002/08/31/big/img_17967
2164
+ 2002/08/28/big/img_19229
2165
+ 2002/08/04/big/img_811
2166
+ 2002/09/01/big/img_16225
2167
+ 2003/01/16/big/img_428
2168
+ 2002/09/02/big/img_15295
2169
+ 2002/07/26/big/img_108
2170
+ 2002/07/21/big/img_477
2171
+ 2002/08/07/big/img_1354
2172
+ 2002/08/23/big/img_246
2173
+ 2002/08/16/big/img_652
2174
+ 2002/07/27/big/img_553
2175
+ 2002/07/31/big/img_346
2176
+ 2002/08/04/big/img_537
2177
+ 2002/08/08/big/img_498
2178
+ 2002/08/29/big/img_18956
2179
+ 2003/01/13/big/img_922
2180
+ 2002/08/31/big/img_17425
2181
+ 2002/07/26/big/img_438
2182
+ 2002/08/19/big/img_185
2183
+ 2003/01/16/big/img_33
2184
+ 2002/08/10/big/img_252
2185
+ 2002/07/29/big/img_598
2186
+ 2002/08/27/big/img_19820
2187
+ 2002/08/06/big/img_2664
2188
+ 2002/08/20/big/img_705
2189
+ 2003/01/14/big/img_816
2190
+ 2002/08/03/big/img_552
2191
+ 2002/07/25/big/img_561
2192
+ 2002/07/25/big/img_934
2193
+ 2002/08/01/big/img_1893
2194
+ 2003/01/14/big/img_746
2195
+ 2003/01/16/big/img_519
2196
+ 2002/08/03/big/img_681
2197
+ 2002/07/24/big/img_808
2198
+ 2002/08/14/big/img_803
2199
+ 2002/08/25/big/img_155
2200
+ 2002/07/30/big/img_1107
2201
+ 2002/08/29/big/img_18882
2202
+ 2003/01/15/big/img_598
2203
+ 2002/08/19/big/img_122
2204
+ 2002/07/30/big/img_428
2205
+ 2002/07/24/big/img_684
2206
+ 2002/08/22/big/img_192
2207
+ 2002/08/22/big/img_543
2208
+ 2002/08/07/big/img_1318
2209
+ 2002/08/18/big/img_25
2210
+ 2002/07/26/big/img_583
2211
+ 2002/07/20/big/img_464
2212
+ 2002/08/19/big/img_664
2213
+ 2002/08/24/big/img_861
2214
+ 2002/09/01/big/img_16136
2215
+ 2002/08/22/big/img_400
2216
+ 2002/08/12/big/img_445
2217
+ 2003/01/14/big/img_174
2218
+ 2002/08/27/big/img_19677
2219
+ 2002/08/31/big/img_17214
2220
+ 2002/08/30/big/img_18175
2221
+ 2003/01/17/big/img_402
2222
+ 2002/08/06/big/img_2396
2223
+ 2002/08/18/big/img_448
2224
+ 2002/08/21/big/img_165
2225
+ 2002/08/31/big/img_17609
2226
+ 2003/01/01/big/img_151
2227
+ 2002/08/26/big/img_372
2228
+ 2002/09/02/big/img_15994
2229
+ 2002/07/26/big/img_660
2230
+ 2002/09/02/big/img_15197
2231
+ 2002/07/29/big/img_258
2232
+ 2002/08/30/big/img_18525
2233
+ 2003/01/13/big/img_368
2234
+ 2002/07/29/big/img_1538
2235
+ 2002/07/21/big/img_787
2236
+ 2002/08/18/big/img_152
2237
+ 2002/08/06/big/img_2379
2238
+ 2003/01/17/big/img_864
2239
+ 2002/08/27/big/img_19998
2240
+ 2002/08/01/big/img_1634
2241
+ 2002/07/25/big/img_414
2242
+ 2002/08/22/big/img_627
2243
+ 2002/08/07/big/img_1669
2244
+ 2002/08/16/big/img_1052
2245
+ 2002/08/31/big/img_17796
2246
+ 2002/08/18/big/img_199
2247
+ 2002/09/02/big/img_15147
2248
+ 2002/08/09/big/img_460
2249
+ 2002/08/14/big/img_581
2250
+ 2002/08/30/big/img_18286
2251
+ 2002/07/26/big/img_337
2252
+ 2002/08/18/big/img_589
2253
+ 2003/01/14/big/img_866
2254
+ 2002/07/20/big/img_624
2255
+ 2002/08/01/big/img_1801
2256
+ 2002/07/24/big/img_683
2257
+ 2002/08/09/big/img_725
2258
+ 2003/01/14/big/img_34
2259
+ 2002/07/30/big/img_144
2260
+ 2002/07/30/big/img_706
2261
+ 2002/08/08/big/img_394
2262
+ 2002/08/19/big/img_619
2263
+ 2002/08/06/big/img_2703
2264
+ 2002/08/29/big/img_19034
2265
+ 2002/07/24/big/img_67
2266
+ 2002/08/27/big/img_19841
2267
+ 2002/08/19/big/img_427
2268
+ 2003/01/14/big/img_333
2269
+ 2002/09/01/big/img_16406
2270
+ 2002/07/19/big/img_882
2271
+ 2002/08/17/big/img_238
2272
+ 2003/01/14/big/img_739
2273
+ 2002/07/22/big/img_151
2274
+ 2002/08/21/big/img_743
2275
+ 2002/07/25/big/img_1048
2276
+ 2002/07/30/big/img_395
2277
+ 2003/01/13/big/img_584
2278
+ 2002/08/13/big/img_742
2279
+ 2002/08/13/big/img_1168
2280
+ 2003/01/14/big/img_147
2281
+ 2002/07/26/big/img_803
2282
+ 2002/08/05/big/img_3298
2283
+ 2002/08/07/big/img_1451
2284
+ 2002/08/16/big/img_424
2285
+ 2002/07/29/big/img_1069
2286
+ 2002/09/01/big/img_16735
2287
+ 2002/07/21/big/img_637
2288
+ 2003/01/14/big/img_585
2289
+ 2002/08/02/big/img_358
2290
+ 2003/01/13/big/img_358
2291
+ 2002/08/14/big/img_198
2292
+ 2002/08/17/big/img_935
2293
+ 2002/08/04/big/img_42
2294
+ 2002/08/30/big/img_18245
2295
+ 2002/07/25/big/img_158
2296
+ 2002/08/22/big/img_744
2297
+ 2002/08/06/big/img_2291
2298
+ 2002/08/05/big/img_3044
2299
+ 2002/07/30/big/img_272
2300
+ 2002/08/23/big/img_641
2301
+ 2002/07/24/big/img_797
2302
+ 2002/07/30/big/img_392
2303
+ 2003/01/14/big/img_447
2304
+ 2002/07/31/big/img_898
2305
+ 2002/08/06/big/img_2812
2306
+ 2002/08/13/big/img_564
2307
+ 2002/07/22/big/img_43
2308
+ 2002/07/26/big/img_634
2309
+ 2002/07/19/big/img_843
2310
+ 2002/08/26/big/img_58
2311
+ 2002/07/21/big/img_375
2312
+ 2002/08/25/big/img_729
2313
+ 2002/07/19/big/img_561
2314
+ 2003/01/15/big/img_884
2315
+ 2002/07/25/big/img_891
2316
+ 2002/08/09/big/img_558
2317
+ 2002/08/26/big/img_587
2318
+ 2002/08/13/big/img_1146
2319
+ 2002/09/02/big/img_15153
2320
+ 2002/07/26/big/img_316
2321
+ 2002/08/01/big/img_1940
2322
+ 2002/08/26/big/img_90
2323
+ 2003/01/13/big/img_347
2324
+ 2002/07/25/big/img_520
2325
+ 2002/08/29/big/img_18718
2326
+ 2002/08/28/big/img_19219
2327
+ 2002/08/13/big/img_375
2328
+ 2002/07/20/big/img_719
2329
+ 2002/08/31/big/img_17431
2330
+ 2002/07/28/big/img_192
2331
+ 2002/08/26/big/img_259
2332
+ 2002/08/18/big/img_484
2333
+ 2002/07/29/big/img_580
2334
+ 2002/07/26/big/img_84
2335
+ 2002/08/02/big/img_302
2336
+ 2002/08/31/big/img_17007
2337
+ 2003/01/15/big/img_543
2338
+ 2002/09/01/big/img_16488
2339
+ 2002/08/22/big/img_798
2340
+ 2002/07/30/big/img_383
2341
+ 2002/08/04/big/img_668
2342
+ 2002/08/13/big/img_156
2343
+ 2002/08/07/big/img_1353
2344
+ 2002/07/25/big/img_281
2345
+ 2003/01/14/big/img_587
2346
+ 2003/01/15/big/img_524
2347
+ 2002/08/19/big/img_726
2348
+ 2002/08/21/big/img_709
2349
+ 2002/08/26/big/img_465
2350
+ 2002/07/31/big/img_658
2351
+ 2002/08/28/big/img_19148
2352
+ 2002/07/23/big/img_423
2353
+ 2002/08/16/big/img_758
2354
+ 2002/08/22/big/img_523
2355
+ 2002/08/16/big/img_591
2356
+ 2002/08/23/big/img_845
2357
+ 2002/07/26/big/img_678
2358
+ 2002/08/09/big/img_806
2359
+ 2002/08/06/big/img_2369
2360
+ 2002/07/29/big/img_457
2361
+ 2002/07/19/big/img_278
2362
+ 2002/08/30/big/img_18107
2363
+ 2002/07/26/big/img_444
2364
+ 2002/08/20/big/img_278
2365
+ 2002/08/26/big/img_92
2366
+ 2002/08/26/big/img_257
2367
+ 2002/07/25/big/img_266
2368
+ 2002/08/05/big/img_3829
2369
+ 2002/07/26/big/img_757
2370
+ 2002/07/29/big/img_1536
2371
+ 2002/08/09/big/img_472
2372
+ 2003/01/17/big/img_480
2373
+ 2002/08/28/big/img_19355
2374
+ 2002/07/26/big/img_97
2375
+ 2002/08/06/big/img_2503
2376
+ 2002/07/19/big/img_254
2377
+ 2002/08/01/big/img_1470
2378
+ 2002/08/21/big/img_42
2379
+ 2002/08/20/big/img_217
2380
+ 2002/08/06/big/img_2459
2381
+ 2002/07/19/big/img_552
2382
+ 2002/08/13/big/img_717
2383
+ 2002/08/12/big/img_586
2384
+ 2002/08/20/big/img_411
2385
+ 2003/01/13/big/img_768
2386
+ 2002/08/07/big/img_1747
2387
+ 2002/08/15/big/img_385
2388
+ 2002/08/01/big/img_1648
2389
+ 2002/08/15/big/img_311
2390
+ 2002/08/21/big/img_95
2391
+ 2002/08/09/big/img_108
2392
+ 2002/08/21/big/img_398
2393
+ 2002/08/17/big/img_340
2394
+ 2002/08/14/big/img_474
2395
+ 2002/08/13/big/img_294
2396
+ 2002/08/24/big/img_840
2397
+ 2002/08/09/big/img_808
2398
+ 2002/08/23/big/img_491
2399
+ 2002/07/28/big/img_33
2400
+ 2003/01/13/big/img_664
2401
+ 2002/08/02/big/img_261
2402
+ 2002/08/09/big/img_591
2403
+ 2002/07/26/big/img_309
2404
+ 2003/01/14/big/img_372
2405
+ 2002/08/19/big/img_581
2406
+ 2002/08/19/big/img_168
2407
+ 2002/08/26/big/img_422
2408
+ 2002/07/24/big/img_106
2409
+ 2002/08/01/big/img_1936
2410
+ 2002/08/05/big/img_3764
2411
+ 2002/08/21/big/img_266
2412
+ 2002/08/31/big/img_17968
2413
+ 2002/08/01/big/img_1941
2414
+ 2002/08/15/big/img_550
2415
+ 2002/08/14/big/img_13
2416
+ 2002/07/30/big/img_171
2417
+ 2003/01/13/big/img_490
2418
+ 2002/07/25/big/img_427
2419
+ 2002/07/19/big/img_770
2420
+ 2002/08/12/big/img_759
2421
+ 2003/01/15/big/img_1360
2422
+ 2002/08/05/big/img_3692
2423
+ 2003/01/16/big/img_30
2424
+ 2002/07/25/big/img_1026
2425
+ 2002/07/22/big/img_288
2426
+ 2002/08/29/big/img_18801
2427
+ 2002/07/24/big/img_793
2428
+ 2002/08/13/big/img_178
2429
+ 2002/08/06/big/img_2322
2430
+ 2003/01/14/big/img_560
2431
+ 2002/08/18/big/img_408
2432
+ 2003/01/16/big/img_915
2433
+ 2003/01/16/big/img_679
2434
+ 2002/08/07/big/img_1552
2435
+ 2002/08/29/big/img_19050
2436
+ 2002/08/01/big/img_2172
2437
+ 2002/07/31/big/img_30
2438
+ 2002/07/30/big/img_1019
2439
+ 2002/07/30/big/img_587
2440
+ 2003/01/13/big/img_773
2441
+ 2002/07/30/big/img_410
2442
+ 2002/07/28/big/img_65
2443
+ 2002/08/05/big/img_3138
2444
+ 2002/07/23/big/img_541
2445
+ 2002/08/22/big/img_963
2446
+ 2002/07/27/big/img_657
2447
+ 2002/07/30/big/img_1051
2448
+ 2003/01/16/big/img_150
2449
+ 2002/07/31/big/img_519
2450
+ 2002/08/01/big/img_1961
2451
+ 2002/08/05/big/img_3752
2452
+ 2002/07/23/big/img_631
2453
+ 2003/01/14/big/img_237
2454
+ 2002/07/28/big/img_21
2455
+ 2002/07/22/big/img_813
2456
+ 2002/08/05/big/img_3563
2457
+ 2003/01/17/big/img_620
2458
+ 2002/07/19/big/img_523
2459
+ 2002/07/30/big/img_904
2460
+ 2002/08/29/big/img_18642
2461
+ 2002/08/11/big/img_492
2462
+ 2002/08/01/big/img_2130
2463
+ 2002/07/25/big/img_618
2464
+ 2002/08/17/big/img_305
2465
+ 2003/01/16/big/img_520
2466
+ 2002/07/26/big/img_495
2467
+ 2002/08/17/big/img_164
2468
+ 2002/08/03/big/img_440
2469
+ 2002/07/24/big/img_441
2470
+ 2002/08/06/big/img_2146
2471
+ 2002/08/11/big/img_558
2472
+ 2002/08/02/big/img_545
2473
+ 2002/08/31/big/img_18090
2474
+ 2003/01/01/big/img_136
2475
+ 2002/07/25/big/img_1099
2476
+ 2003/01/13/big/img_728
2477
+ 2003/01/16/big/img_197
2478
+ 2002/07/26/big/img_651
2479
+ 2002/08/11/big/img_676
2480
+ 2003/01/15/big/img_10
2481
+ 2002/08/21/big/img_250
2482
+ 2002/08/14/big/img_325
2483
+ 2002/08/04/big/img_390
2484
+ 2002/07/24/big/img_554
2485
+ 2003/01/16/big/img_333
2486
+ 2002/07/31/big/img_922
2487
+ 2002/09/02/big/img_15586
2488
+ 2003/01/16/big/img_184
2489
+ 2002/07/22/big/img_766
2490
+ 2002/07/21/big/img_608
2491
+ 2002/08/07/big/img_1578
2492
+ 2002/08/17/big/img_961
2493
+ 2002/07/27/big/img_324
2494
+ 2002/08/05/big/img_3765
2495
+ 2002/08/23/big/img_462
2496
+ 2003/01/16/big/img_382
2497
+ 2002/08/27/big/img_19838
2498
+ 2002/08/01/big/img_1505
2499
+ 2002/08/21/big/img_662
2500
+ 2002/08/14/big/img_605
2501
+ 2002/08/19/big/img_816
2502
+ 2002/07/29/big/img_136
2503
+ 2002/08/20/big/img_719
2504
+ 2002/08/06/big/img_2826
2505
+ 2002/08/10/big/img_630
2506
+ 2003/01/17/big/img_973
2507
+ 2002/08/14/big/img_116
2508
+ 2002/08/02/big/img_666
2509
+ 2002/08/21/big/img_710
2510
+ 2002/08/05/big/img_55
2511
+ 2002/07/31/big/img_229
2512
+ 2002/08/01/big/img_1549
2513
+ 2002/07/23/big/img_432
2514
+ 2002/07/21/big/img_430
2515
+ 2002/08/21/big/img_549
2516
+ 2002/08/08/big/img_985
2517
+ 2002/07/20/big/img_610
2518
+ 2002/07/23/big/img_978
2519
+ 2002/08/23/big/img_219
2520
+ 2002/07/25/big/img_175
2521
+ 2003/01/15/big/img_230
2522
+ 2002/08/23/big/img_385
2523
+ 2002/07/31/big/img_879
2524
+ 2002/08/12/big/img_495
2525
+ 2002/08/22/big/img_499
2526
+ 2002/08/30/big/img_18322
2527
+ 2002/08/15/big/img_795
2528
+ 2002/08/13/big/img_835
2529
+ 2003/01/17/big/img_930
2530
+ 2002/07/30/big/img_873
2531
+ 2002/08/11/big/img_257
2532
+ 2002/07/31/big/img_593
2533
+ 2002/08/21/big/img_916
2534
+ 2003/01/13/big/img_814
2535
+ 2002/07/25/big/img_722
2536
+ 2002/08/16/big/img_379
2537
+ 2002/07/31/big/img_497
2538
+ 2002/07/22/big/img_602
2539
+ 2002/08/21/big/img_642
2540
+ 2002/08/21/big/img_614
2541
+ 2002/08/23/big/img_482
2542
+ 2002/07/29/big/img_603
2543
+ 2002/08/13/big/img_705
2544
+ 2002/07/23/big/img_833
2545
+ 2003/01/14/big/img_511
2546
+ 2002/07/24/big/img_376
2547
+ 2002/08/17/big/img_1030
2548
+ 2002/08/05/big/img_3576
2549
+ 2002/08/16/big/img_540
2550
+ 2002/07/22/big/img_630
2551
+ 2002/08/10/big/img_180
2552
+ 2002/08/14/big/img_905
2553
+ 2002/08/29/big/img_18777
2554
+ 2002/08/22/big/img_693
2555
+ 2003/01/16/big/img_933
2556
+ 2002/08/20/big/img_555
2557
+ 2002/08/15/big/img_549
2558
+ 2003/01/14/big/img_830
2559
+ 2003/01/16/big/img_64
2560
+ 2002/08/27/big/img_19670
2561
+ 2002/08/22/big/img_729
2562
+ 2002/07/27/big/img_981
2563
+ 2002/08/09/big/img_458
2564
+ 2003/01/17/big/img_884
2565
+ 2002/07/25/big/img_639
2566
+ 2002/08/31/big/img_18008
2567
+ 2002/08/22/big/img_249
2568
+ 2002/08/17/big/img_971
2569
+ 2002/08/04/big/img_308
2570
+ 2002/07/28/big/img_362
2571
+ 2002/08/12/big/img_142
2572
+ 2002/08/26/big/img_61
2573
+ 2002/08/14/big/img_422
2574
+ 2002/07/19/big/img_607
2575
+ 2003/01/15/big/img_717
2576
+ 2002/08/01/big/img_1475
2577
+ 2002/08/29/big/img_19061
2578
+ 2003/01/01/big/img_346
2579
+ 2002/07/20/big/img_315
2580
+ 2003/01/15/big/img_756
2581
+ 2002/08/15/big/img_879
2582
+ 2002/08/08/big/img_615
2583
+ 2003/01/13/big/img_431
2584
+ 2002/08/05/big/img_3233
2585
+ 2002/08/24/big/img_526
2586
+ 2003/01/13/big/img_717
2587
+ 2002/09/01/big/img_16408
2588
+ 2002/07/22/big/img_217
2589
+ 2002/07/31/big/img_960
2590
+ 2002/08/21/big/img_610
2591
+ 2002/08/05/big/img_3753
2592
+ 2002/08/03/big/img_151
2593
+ 2002/08/21/big/img_267
2594
+ 2002/08/01/big/img_2175
2595
+ 2002/08/04/big/img_556
2596
+ 2002/08/21/big/img_527
2597
+ 2002/09/02/big/img_15800
2598
+ 2002/07/27/big/img_156
2599
+ 2002/07/20/big/img_590
2600
+ 2002/08/15/big/img_700
2601
+ 2002/08/08/big/img_444
2602
+ 2002/07/25/big/img_94
2603
+ 2002/07/24/big/img_778
2604
+ 2002/08/14/big/img_694
2605
+ 2002/07/20/big/img_666
2606
+ 2002/08/02/big/img_200
2607
+ 2002/08/02/big/img_578
2608
+ 2003/01/17/big/img_332
2609
+ 2002/09/01/big/img_16352
2610
+ 2002/08/27/big/img_19668
2611
+ 2002/07/23/big/img_823
2612
+ 2002/08/13/big/img_431
2613
+ 2003/01/16/big/img_463
2614
+ 2002/08/27/big/img_19711
2615
+ 2002/08/23/big/img_154
2616
+ 2002/07/31/big/img_360
2617
+ 2002/08/23/big/img_555
2618
+ 2002/08/10/big/img_561
2619
+ 2003/01/14/big/img_550
2620
+ 2002/08/07/big/img_1370
2621
+ 2002/07/30/big/img_1184
2622
+ 2002/08/01/big/img_1445
2623
+ 2002/08/23/big/img_22
2624
+ 2002/07/30/big/img_606
2625
+ 2003/01/17/big/img_271
2626
+ 2002/08/31/big/img_17316
2627
+ 2002/08/16/big/img_973
2628
+ 2002/07/26/big/img_77
2629
+ 2002/07/20/big/img_788
2630
+ 2002/08/06/big/img_2426
2631
+ 2002/08/07/big/img_1498
2632
+ 2002/08/16/big/img_358
2633
+ 2002/08/06/big/img_2851
2634
+ 2002/08/12/big/img_359
2635
+ 2002/08/01/big/img_1521
2636
+ 2002/08/02/big/img_709
2637
+ 2002/08/20/big/img_935
2638
+ 2002/08/12/big/img_188
2639
+ 2002/08/24/big/img_411
2640
+ 2002/08/22/big/img_680
2641
+ 2002/08/06/big/img_2480
2642
+ 2002/07/20/big/img_627
2643
+ 2002/07/30/big/img_214
2644
+ 2002/07/25/big/img_354
2645
+ 2002/08/02/big/img_636
2646
+ 2003/01/15/big/img_661
2647
+ 2002/08/07/big/img_1327
2648
+ 2002/08/01/big/img_2108
2649
+ 2002/08/31/big/img_17919
2650
+ 2002/08/29/big/img_18768
2651
+ 2002/08/05/big/img_3840
2652
+ 2002/07/26/big/img_242
2653
+ 2003/01/14/big/img_451
2654
+ 2002/08/20/big/img_923
2655
+ 2002/08/27/big/img_19908
2656
+ 2002/08/16/big/img_282
2657
+ 2002/08/19/big/img_440
2658
+ 2003/01/01/big/img_230
2659
+ 2002/08/08/big/img_212
2660
+ 2002/07/20/big/img_443
2661
+ 2002/08/25/big/img_635
2662
+ 2003/01/13/big/img_1169
2663
+ 2002/07/26/big/img_998
2664
+ 2002/08/15/big/img_995
2665
+ 2002/08/06/big/img_3002
2666
+ 2002/07/29/big/img_460
2667
+ 2003/01/14/big/img_925
2668
+ 2002/07/23/big/img_539
2669
+ 2002/08/16/big/img_694
2670
+ 2003/01/13/big/img_459
2671
+ 2002/07/23/big/img_249
2672
+ 2002/08/20/big/img_539
2673
+ 2002/08/04/big/img_186
2674
+ 2002/08/26/big/img_264
2675
+ 2002/07/22/big/img_704
2676
+ 2002/08/25/big/img_277
2677
+ 2002/08/22/big/img_988
2678
+ 2002/07/29/big/img_504
2679
+ 2002/08/05/big/img_3600
2680
+ 2002/08/30/big/img_18380
2681
+ 2003/01/14/big/img_937
2682
+ 2002/08/21/big/img_254
2683
+ 2002/08/10/big/img_130
2684
+ 2002/08/20/big/img_339
2685
+ 2003/01/14/big/img_428
2686
+ 2002/08/20/big/img_889
2687
+ 2002/08/31/big/img_17637
2688
+ 2002/07/26/big/img_644
2689
+ 2002/09/01/big/img_16776
2690
+ 2002/08/06/big/img_2239
2691
+ 2002/08/06/big/img_2646
2692
+ 2003/01/13/big/img_491
2693
+ 2002/08/10/big/img_579
2694
+ 2002/08/21/big/img_713
2695
+ 2002/08/22/big/img_482
2696
+ 2002/07/22/big/img_167
2697
+ 2002/07/24/big/img_539
2698
+ 2002/08/14/big/img_721
2699
+ 2002/07/25/big/img_389
2700
+ 2002/09/01/big/img_16591
2701
+ 2002/08/13/big/img_543
2702
+ 2003/01/14/big/img_432
2703
+ 2002/08/09/big/img_287
2704
+ 2002/07/26/big/img_126
2705
+ 2002/08/23/big/img_412
2706
+ 2002/08/15/big/img_1034
2707
+ 2002/08/28/big/img_19485
2708
+ 2002/07/31/big/img_236
2709
+ 2002/07/30/big/img_523
2710
+ 2002/07/19/big/img_141
2711
+ 2003/01/17/big/img_957
2712
+ 2002/08/04/big/img_81
2713
+ 2002/07/25/big/img_206
2714
+ 2002/08/15/big/img_716
2715
+ 2002/08/13/big/img_403
2716
+ 2002/08/15/big/img_685
2717
+ 2002/07/26/big/img_884
2718
+ 2002/07/19/big/img_499
2719
+ 2002/07/23/big/img_772
2720
+ 2002/07/27/big/img_752
2721
+ 2003/01/14/big/img_493
2722
+ 2002/08/25/big/img_664
2723
+ 2002/07/31/big/img_334
2724
+ 2002/08/26/big/img_678
2725
+ 2002/09/01/big/img_16541
2726
+ 2003/01/14/big/img_347
2727
+ 2002/07/23/big/img_187
2728
+ 2002/07/30/big/img_1163
2729
+ 2002/08/05/big/img_35
2730
+ 2002/08/22/big/img_944
2731
+ 2002/08/07/big/img_1239
2732
+ 2002/07/29/big/img_1215
2733
+ 2002/08/03/big/img_312
2734
+ 2002/08/05/big/img_3523
2735
+ 2002/07/29/big/img_218
2736
+ 2002/08/13/big/img_672
2737
+ 2002/08/16/big/img_205
2738
+ 2002/08/17/big/img_594
2739
+ 2002/07/29/big/img_1411
2740
+ 2002/07/30/big/img_942
2741
+ 2003/01/16/big/img_312
2742
+ 2002/08/08/big/img_312
2743
+ 2002/07/25/big/img_15
2744
+ 2002/08/09/big/img_839
2745
+ 2002/08/01/big/img_2069
2746
+ 2002/08/31/big/img_17512
2747
+ 2002/08/01/big/img_3
2748
+ 2002/07/31/big/img_320
2749
+ 2003/01/15/big/img_1265
2750
+ 2002/08/14/big/img_563
2751
+ 2002/07/31/big/img_167
2752
+ 2002/08/20/big/img_374
2753
+ 2002/08/13/big/img_406
2754
+ 2002/08/08/big/img_625
2755
+ 2002/08/02/big/img_314
2756
+ 2002/08/27/big/img_19964
2757
+ 2002/09/01/big/img_16670
2758
+ 2002/07/31/big/img_599
2759
+ 2002/08/29/big/img_18906
2760
+ 2002/07/24/big/img_373
2761
+ 2002/07/26/big/img_513
2762
+ 2002/09/02/big/img_15497
2763
+ 2002/08/19/big/img_117
2764
+ 2003/01/01/big/img_158
2765
+ 2002/08/24/big/img_178
2766
+ 2003/01/13/big/img_935
2767
+ 2002/08/13/big/img_609
2768
+ 2002/08/30/big/img_18341
2769
+ 2002/08/25/big/img_674
2770
+ 2003/01/13/big/img_209
2771
+ 2002/08/13/big/img_258
2772
+ 2002/08/05/big/img_3543
2773
+ 2002/08/07/big/img_1970
2774
+ 2002/08/06/big/img_3004
2775
+ 2003/01/17/big/img_487
2776
+ 2002/08/24/big/img_873
2777
+ 2002/08/29/big/img_18730
2778
+ 2002/08/09/big/img_375
2779
+ 2003/01/16/big/img_751
2780
+ 2002/08/02/big/img_603
2781
+ 2002/08/19/big/img_325
2782
+ 2002/09/01/big/img_16420
2783
+ 2002/08/05/big/img_3633
2784
+ 2002/08/21/big/img_516
2785
+ 2002/07/19/big/img_501
2786
+ 2002/07/26/big/img_688
2787
+ 2002/07/24/big/img_256
2788
+ 2002/07/25/big/img_438
2789
+ 2002/07/31/big/img_1017
2790
+ 2002/08/22/big/img_512
2791
+ 2002/07/21/big/img_543
2792
+ 2002/08/08/big/img_223
2793
+ 2002/08/19/big/img_189
2794
+ 2002/08/12/big/img_630
2795
+ 2002/07/30/big/img_958
2796
+ 2002/07/28/big/img_208
2797
+ 2002/08/31/big/img_17691
2798
+ 2002/07/22/big/img_542
2799
+ 2002/07/19/big/img_741
2800
+ 2002/07/19/big/img_158
2801
+ 2002/08/15/big/img_399
2802
+ 2002/08/01/big/img_2159
2803
+ 2002/08/14/big/img_455
2804
+ 2002/08/17/big/img_1011
2805
+ 2002/08/26/big/img_744
2806
+ 2002/08/12/big/img_624
2807
+ 2003/01/17/big/img_821
2808
+ 2002/08/16/big/img_980
2809
+ 2002/07/28/big/img_281
2810
+ 2002/07/25/big/img_171
2811
+ 2002/08/03/big/img_116
2812
+ 2002/07/22/big/img_467
2813
+ 2002/07/31/big/img_750
2814
+ 2002/07/26/big/img_435
2815
+ 2002/07/19/big/img_822
2816
+ 2002/08/13/big/img_626
2817
+ 2002/08/11/big/img_344
2818
+ 2002/08/02/big/img_473
2819
+ 2002/09/01/big/img_16817
2820
+ 2002/08/01/big/img_1275
2821
+ 2002/08/28/big/img_19270
2822
+ 2002/07/23/big/img_607
2823
+ 2002/08/09/big/img_316
2824
+ 2002/07/29/big/img_626
2825
+ 2002/07/24/big/img_824
2826
+ 2002/07/22/big/img_342
2827
+ 2002/08/08/big/img_794
2828
+ 2002/08/07/big/img_1209
2829
+ 2002/07/19/big/img_18
2830
+ 2002/08/25/big/img_634
2831
+ 2002/07/24/big/img_730
2832
+ 2003/01/17/big/img_356
2833
+ 2002/07/23/big/img_305
2834
+ 2002/07/30/big/img_453
2835
+ 2003/01/13/big/img_972
2836
+ 2002/08/06/big/img_2610
2837
+ 2002/08/29/big/img_18920
2838
+ 2002/07/31/big/img_123
2839
+ 2002/07/26/big/img_979
2840
+ 2002/08/24/big/img_635
2841
+ 2002/08/05/big/img_3704
2842
+ 2002/08/07/big/img_1358
2843
+ 2002/07/22/big/img_306
2844
+ 2002/08/13/big/img_619
2845
+ 2002/08/02/big/img_366
data/__init__.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ from .wider_face import WiderFaceDetection, detection_collate
2
+ from .data_augment import *
3
+ from .config import *
data/__pycache__/__init__.cpython-39.pyc ADDED
Binary file (291 Bytes). View file
 
data/__pycache__/config.cpython-39.pyc ADDED
Binary file (782 Bytes). View file
 
data/__pycache__/data_augment.cpython-39.pyc ADDED
Binary file (5.76 kB). View file
 
data/__pycache__/wider_face.cpython-39.pyc ADDED
Binary file (3.19 kB). View file
 
data/config.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # config.py
2
+
3
+ cfg_mnet = {
4
+ 'name': 'mobilenet0.25',
5
+ 'min_sizes': [[16, 32], [64, 128], [256, 512]],
6
+ 'steps': [8, 16, 32],
7
+ 'variance': [0.1, 0.2],
8
+ 'clip': False,
9
+ 'loc_weight': 2.0,
10
+ 'gpu_train': True,
11
+ 'batch_size': 32,
12
+ 'ngpu': 1,
13
+ 'epoch': 250,
14
+ 'decay1': 190,
15
+ 'decay2': 220,
16
+ 'image_size': 640,
17
+ 'pretrain': True,
18
+ 'return_layers': {'stage1': 1, 'stage2': 2, 'stage3': 3},
19
+ 'in_channel': 32,
20
+ 'out_channel': 64
21
+ }
22
+
23
+ cfg_re50 = {
24
+ 'name': 'Resnet50',
25
+ 'min_sizes': [[16, 32], [64, 128], [256, 512]],
26
+ 'steps': [8, 16, 32],
27
+ 'variance': [0.1, 0.2],
28
+ 'clip': False,
29
+ 'loc_weight': 2.0,
30
+ 'gpu_train': True,
31
+ 'batch_size': 24,
32
+ 'ngpu': 4,
33
+ 'epoch': 100,
34
+ 'decay1': 70,
35
+ 'decay2': 90,
36
+ 'image_size': 840,
37
+ 'pretrain': True,
38
+ 'return_layers': {'layer2': 1, 'layer3': 2, 'layer4': 3},
39
+ 'in_channel': 256,
40
+ 'out_channel': 256
41
+ }
42
+
data/data_augment.py ADDED
@@ -0,0 +1,237 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ import random
4
+ from utils.box_utils import matrix_iof
5
+
6
+
7
+ def _crop(image, boxes, labels, landm, img_dim):
8
+ height, width, _ = image.shape
9
+ pad_image_flag = True
10
+
11
+ for _ in range(250):
12
+ """
13
+ if random.uniform(0, 1) <= 0.2:
14
+ scale = 1.0
15
+ else:
16
+ scale = random.uniform(0.3, 1.0)
17
+ """
18
+ PRE_SCALES = [0.3, 0.45, 0.6, 0.8, 1.0]
19
+ scale = random.choice(PRE_SCALES)
20
+ short_side = min(width, height)
21
+ w = int(scale * short_side)
22
+ h = w
23
+
24
+ if width == w:
25
+ l = 0
26
+ else:
27
+ l = random.randrange(width - w)
28
+ if height == h:
29
+ t = 0
30
+ else:
31
+ t = random.randrange(height - h)
32
+ roi = np.array((l, t, l + w, t + h))
33
+
34
+ value = matrix_iof(boxes, roi[np.newaxis])
35
+ flag = (value >= 1)
36
+ if not flag.any():
37
+ continue
38
+
39
+ centers = (boxes[:, :2] + boxes[:, 2:]) / 2
40
+ mask_a = np.logical_and(roi[:2] < centers, centers < roi[2:]).all(axis=1)
41
+ boxes_t = boxes[mask_a].copy()
42
+ labels_t = labels[mask_a].copy()
43
+ landms_t = landm[mask_a].copy()
44
+ landms_t = landms_t.reshape([-1, 5, 2])
45
+
46
+ if boxes_t.shape[0] == 0:
47
+ continue
48
+
49
+ image_t = image[roi[1]:roi[3], roi[0]:roi[2]]
50
+
51
+ boxes_t[:, :2] = np.maximum(boxes_t[:, :2], roi[:2])
52
+ boxes_t[:, :2] -= roi[:2]
53
+ boxes_t[:, 2:] = np.minimum(boxes_t[:, 2:], roi[2:])
54
+ boxes_t[:, 2:] -= roi[:2]
55
+
56
+ # landm
57
+ landms_t[:, :, :2] = landms_t[:, :, :2] - roi[:2]
58
+ landms_t[:, :, :2] = np.maximum(landms_t[:, :, :2], np.array([0, 0]))
59
+ landms_t[:, :, :2] = np.minimum(landms_t[:, :, :2], roi[2:] - roi[:2])
60
+ landms_t = landms_t.reshape([-1, 10])
61
+
62
+
63
+ # make sure that the cropped image contains at least one face > 16 pixel at training image scale
64
+ b_w_t = (boxes_t[:, 2] - boxes_t[:, 0] + 1) / w * img_dim
65
+ b_h_t = (boxes_t[:, 3] - boxes_t[:, 1] + 1) / h * img_dim
66
+ mask_b = np.minimum(b_w_t, b_h_t) > 0.0
67
+ boxes_t = boxes_t[mask_b]
68
+ labels_t = labels_t[mask_b]
69
+ landms_t = landms_t[mask_b]
70
+
71
+ if boxes_t.shape[0] == 0:
72
+ continue
73
+
74
+ pad_image_flag = False
75
+
76
+ return image_t, boxes_t, labels_t, landms_t, pad_image_flag
77
+ return image, boxes, labels, landm, pad_image_flag
78
+
79
+
80
+ def _distort(image):
81
+
82
+ def _convert(image, alpha=1, beta=0):
83
+ tmp = image.astype(float) * alpha + beta
84
+ tmp[tmp < 0] = 0
85
+ tmp[tmp > 255] = 255
86
+ image[:] = tmp
87
+
88
+ image = image.copy()
89
+
90
+ if random.randrange(2):
91
+
92
+ #brightness distortion
93
+ if random.randrange(2):
94
+ _convert(image, beta=random.uniform(-32, 32))
95
+
96
+ #contrast distortion
97
+ if random.randrange(2):
98
+ _convert(image, alpha=random.uniform(0.5, 1.5))
99
+
100
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
101
+
102
+ #saturation distortion
103
+ if random.randrange(2):
104
+ _convert(image[:, :, 1], alpha=random.uniform(0.5, 1.5))
105
+
106
+ #hue distortion
107
+ if random.randrange(2):
108
+ tmp = image[:, :, 0].astype(int) + random.randint(-18, 18)
109
+ tmp %= 180
110
+ image[:, :, 0] = tmp
111
+
112
+ image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR)
113
+
114
+ else:
115
+
116
+ #brightness distortion
117
+ if random.randrange(2):
118
+ _convert(image, beta=random.uniform(-32, 32))
119
+
120
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
121
+
122
+ #saturation distortion
123
+ if random.randrange(2):
124
+ _convert(image[:, :, 1], alpha=random.uniform(0.5, 1.5))
125
+
126
+ #hue distortion
127
+ if random.randrange(2):
128
+ tmp = image[:, :, 0].astype(int) + random.randint(-18, 18)
129
+ tmp %= 180
130
+ image[:, :, 0] = tmp
131
+
132
+ image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR)
133
+
134
+ #contrast distortion
135
+ if random.randrange(2):
136
+ _convert(image, alpha=random.uniform(0.5, 1.5))
137
+
138
+ return image
139
+
140
+
141
+ def _expand(image, boxes, fill, p):
142
+ if random.randrange(2):
143
+ return image, boxes
144
+
145
+ height, width, depth = image.shape
146
+
147
+ scale = random.uniform(1, p)
148
+ w = int(scale * width)
149
+ h = int(scale * height)
150
+
151
+ left = random.randint(0, w - width)
152
+ top = random.randint(0, h - height)
153
+
154
+ boxes_t = boxes.copy()
155
+ boxes_t[:, :2] += (left, top)
156
+ boxes_t[:, 2:] += (left, top)
157
+ expand_image = np.empty(
158
+ (h, w, depth),
159
+ dtype=image.dtype)
160
+ expand_image[:, :] = fill
161
+ expand_image[top:top + height, left:left + width] = image
162
+ image = expand_image
163
+
164
+ return image, boxes_t
165
+
166
+
167
+ def _mirror(image, boxes, landms):
168
+ _, width, _ = image.shape
169
+ if random.randrange(2):
170
+ image = image[:, ::-1]
171
+ boxes = boxes.copy()
172
+ boxes[:, 0::2] = width - boxes[:, 2::-2]
173
+
174
+ # landm
175
+ landms = landms.copy()
176
+ landms = landms.reshape([-1, 5, 2])
177
+ landms[:, :, 0] = width - landms[:, :, 0]
178
+ tmp = landms[:, 1, :].copy()
179
+ landms[:, 1, :] = landms[:, 0, :]
180
+ landms[:, 0, :] = tmp
181
+ tmp1 = landms[:, 4, :].copy()
182
+ landms[:, 4, :] = landms[:, 3, :]
183
+ landms[:, 3, :] = tmp1
184
+ landms = landms.reshape([-1, 10])
185
+
186
+ return image, boxes, landms
187
+
188
+
189
+ def _pad_to_square(image, rgb_mean, pad_image_flag):
190
+ if not pad_image_flag:
191
+ return image
192
+ height, width, _ = image.shape
193
+ long_side = max(width, height)
194
+ image_t = np.empty((long_side, long_side, 3), dtype=image.dtype)
195
+ image_t[:, :] = rgb_mean
196
+ image_t[0:0 + height, 0:0 + width] = image
197
+ return image_t
198
+
199
+
200
+ def _resize_subtract_mean(image, insize, rgb_mean):
201
+ interp_methods = [cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_NEAREST, cv2.INTER_LANCZOS4]
202
+ interp_method = interp_methods[random.randrange(5)]
203
+ image = cv2.resize(image, (insize, insize), interpolation=interp_method)
204
+ image = image.astype(np.float32)
205
+ image -= rgb_mean
206
+ return image.transpose(2, 0, 1)
207
+
208
+
209
+ class preproc(object):
210
+
211
+ def __init__(self, img_dim, rgb_means):
212
+ self.img_dim = img_dim
213
+ self.rgb_means = rgb_means
214
+
215
+ def __call__(self, image, targets):
216
+ assert targets.shape[0] > 0, "this image does not have gt"
217
+
218
+ boxes = targets[:, :4].copy()
219
+ labels = targets[:, -1].copy()
220
+ landm = targets[:, 4:-1].copy()
221
+
222
+ image_t, boxes_t, labels_t, landm_t, pad_image_flag = _crop(image, boxes, labels, landm, self.img_dim)
223
+ image_t = _distort(image_t)
224
+ image_t = _pad_to_square(image_t,self.rgb_means, pad_image_flag)
225
+ image_t, boxes_t, landm_t = _mirror(image_t, boxes_t, landm_t)
226
+ height, width, _ = image_t.shape
227
+ image_t = _resize_subtract_mean(image_t, self.img_dim, self.rgb_means)
228
+ boxes_t[:, 0::2] /= width
229
+ boxes_t[:, 1::2] /= height
230
+
231
+ landm_t[:, 0::2] /= width
232
+ landm_t[:, 1::2] /= height
233
+
234
+ labels_t = np.expand_dims(labels_t, 1)
235
+ targets_t = np.hstack((boxes_t, landm_t, labels_t))
236
+
237
+ return image_t, targets_t
data/wider_face.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import os.path
3
+ import sys
4
+ import torch
5
+ import torch.utils.data as data
6
+ import cv2
7
+ import numpy as np
8
+
9
+ class WiderFaceDetection(data.Dataset):
10
+ def __init__(self, txt_path, preproc=None):
11
+ self.preproc = preproc
12
+ self.imgs_path = []
13
+ self.words = []
14
+ f = open(txt_path,'r')
15
+ lines = f.readlines()
16
+ isFirst = True
17
+ labels = []
18
+ for line in lines:
19
+ line = line.rstrip()
20
+ if line.startswith('#'):
21
+ if isFirst is True:
22
+ isFirst = False
23
+ else:
24
+ labels_copy = labels.copy()
25
+ self.words.append(labels_copy)
26
+ labels.clear()
27
+ path = line[2:]
28
+ path = txt_path.replace('label.txt','images/') + path
29
+ self.imgs_path.append(path)
30
+ else:
31
+ line = line.split(' ')
32
+ label = [float(x) for x in line]
33
+ labels.append(label)
34
+
35
+ self.words.append(labels)
36
+
37
+ def __len__(self):
38
+ return len(self.imgs_path)
39
+
40
+ def __getitem__(self, index):
41
+ img = cv2.imread(self.imgs_path[index])
42
+ height, width, _ = img.shape
43
+
44
+ labels = self.words[index]
45
+ annotations = np.zeros((0, 15))
46
+ if len(labels) == 0:
47
+ return annotations
48
+ for idx, label in enumerate(labels):
49
+ annotation = np.zeros((1, 15))
50
+ # bbox
51
+ annotation[0, 0] = label[0] # x1
52
+ annotation[0, 1] = label[1] # y1
53
+ annotation[0, 2] = label[0] + label[2] # x2
54
+ annotation[0, 3] = label[1] + label[3] # y2
55
+
56
+ # landmarks
57
+ annotation[0, 4] = label[4] # l0_x
58
+ annotation[0, 5] = label[5] # l0_y
59
+ annotation[0, 6] = label[7] # l1_x
60
+ annotation[0, 7] = label[8] # l1_y
61
+ annotation[0, 8] = label[10] # l2_x
62
+ annotation[0, 9] = label[11] # l2_y
63
+ annotation[0, 10] = label[13] # l3_x
64
+ annotation[0, 11] = label[14] # l3_y
65
+ annotation[0, 12] = label[16] # l4_x
66
+ annotation[0, 13] = label[17] # l4_y
67
+ if (annotation[0, 4]<0):
68
+ annotation[0, 14] = -1
69
+ else:
70
+ annotation[0, 14] = 1
71
+
72
+ annotations = np.append(annotations, annotation, axis=0)
73
+ target = np.array(annotations)
74
+ if self.preproc is not None:
75
+ img, target = self.preproc(img, target)
76
+
77
+ return torch.from_numpy(img), target
78
+
79
+ def detection_collate(batch):
80
+ """Custom collate fn for dealing with batches of images that have a different
81
+ number of associated object annotations (bounding boxes).
82
+
83
+ Arguments:
84
+ batch: (tuple) A tuple of tensor images and lists of annotations
85
+
86
+ Return:
87
+ A tuple containing:
88
+ 1) (tensor) batch of images stacked on their 0 dim
89
+ 2) (list of tensors) annotations for a given image are stacked on 0 dim
90
+ """
91
+ targets = []
92
+ imgs = []
93
+ for _, sample in enumerate(batch):
94
+ for _, tup in enumerate(sample):
95
+ if torch.is_tensor(tup):
96
+ imgs.append(tup)
97
+ elif isinstance(tup, type(np.empty(0))):
98
+ annos = torch.from_numpy(tup).float()
99
+ targets.append(annos)
100
+
101
+ return (torch.stack(imgs, 0), targets)
dataset/__init__.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .abstract_dataset import AbstractDataset
2
+ from .faceforensics import FaceForensics
3
+ from .wild_deepfake import WildDeepfake
4
+ from .celeb_df import CelebDF
5
+ from .dfdc import DFDC
6
+
7
+ LOADERS = {
8
+ "FaceForensics": FaceForensics,
9
+ "WildDeepfake": WildDeepfake,
10
+ "CelebDF": CelebDF,
11
+ "DFDC": DFDC,
12
+ }
13
+
14
+
15
+ def load_dataset(name="FaceForensics"):
16
+ print(f"Loading dataset: '{name}'...")
17
+ return LOADERS[name]
dataset/abstract_dataset.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import torch
3
+ import numpy as np
4
+ from torchvision.datasets import VisionDataset
5
+ import albumentations
6
+ from albumentations import Compose
7
+ from albumentations.pytorch.transforms import ToTensorV2
8
+
9
+
10
+ class AbstractDataset(VisionDataset):
11
+ def __init__(self, cfg, seed=2022, transforms=None, transform=None, target_transform=None):
12
+ super(AbstractDataset, self).__init__(cfg['root'], transforms=transforms,
13
+ transform=transform, target_transform=target_transform)
14
+ # fix for re-production
15
+ np.random.seed(seed)
16
+
17
+ self.images = list()
18
+ self.targets = list()
19
+ self.split = cfg['split']
20
+ if self.transforms is None:
21
+ self.transforms = Compose(
22
+ [getattr(albumentations, _['name'])(**_['params']) for _ in cfg['transforms']] +
23
+ [ToTensorV2()]
24
+ )
25
+
26
+ def __len__(self):
27
+ return len(self.images)
28
+
29
+ def __getitem__(self, index):
30
+ path = self.images[index]
31
+ tgt = self.targets[index]
32
+ return path, tgt
33
+
34
+ def load_item(self, items):
35
+ images = list()
36
+ for item in items:
37
+ img = cv2.imread(item)
38
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
39
+ image = self.transforms(image=img)['image']
40
+ images.append(image)
41
+ return torch.stack(images, dim=0)
dataset/celeb_df.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from glob import glob
3
+ from os import listdir
4
+ from os.path import join
5
+ from dataset import AbstractDataset
6
+
7
+ SPLITS = ["train", "test"]
8
+
9
+
10
+ class CelebDF(AbstractDataset):
11
+ """
12
+ Celeb-DF v2 Dataset proposed in "Celeb-DF: A Large-scale Challenging Dataset for DeepFake Forensics".
13
+ """
14
+
15
+ def __init__(self, cfg, seed=2022, transforms=None, transform=None, target_transform=None):
16
+ # pre-check
17
+ if cfg['split'] not in SPLITS:
18
+ raise ValueError(f"split should be one of {SPLITS}, but found {cfg['split']}.")
19
+ super(CelebDF, self).__init__(cfg, seed, transforms, transform, target_transform)
20
+ print(f"Loading data from 'Celeb-DF' of split '{cfg['split']}'"
21
+ f"\nPlease wait patiently...")
22
+ self.categories = ['original', 'fake']
23
+ self.root = cfg['root']
24
+ images_ids = self.__get_images_ids()
25
+ test_ids = self.__get_test_ids()
26
+ train_ids = [images_ids[0] - test_ids[0],
27
+ images_ids[1] - test_ids[1],
28
+ images_ids[2] - test_ids[2]]
29
+ self.images, self.targets = self.__get_images(
30
+ test_ids if cfg['split'] == "test" else train_ids, cfg['balance'])
31
+ assert len(self.images) == len(self.targets), "The number of images and targets not consistent."
32
+ print("Data from 'Celeb-DF' loaded.\n")
33
+ print(f"Dataset contains {len(self.images)} images.\n")
34
+
35
+ def __get_images_ids(self):
36
+ youtube_real = listdir(join(self.root, 'YouTube-real', 'images'))
37
+ celeb_real = listdir(join(self.root, 'Celeb-real', 'images'))
38
+ celeb_fake = listdir(join(self.root, 'Celeb-synthesis', 'images'))
39
+ return set(youtube_real), set(celeb_real), set(celeb_fake)
40
+
41
+ def __get_test_ids(self):
42
+ youtube_real = set()
43
+ celeb_real = set()
44
+ celeb_fake = set()
45
+ with open(join(self.root, "List_of_testing_videos.txt"), "r", encoding="utf-8") as f:
46
+ contents = f.readlines()
47
+ for line in contents:
48
+ name = line.split(" ")[-1]
49
+ number = name.split("/")[-1].split(".")[0]
50
+ if "YouTube-real" in name:
51
+ youtube_real.add(number)
52
+ elif "Celeb-real" in name:
53
+ celeb_real.add(number)
54
+ elif "Celeb-synthesis" in name:
55
+ celeb_fake.add(number)
56
+ else:
57
+ raise ValueError("'List_of_testing_videos.txt' file corrupted.")
58
+ return youtube_real, celeb_real, celeb_fake
59
+
60
+ def __get_images(self, ids, balance=False):
61
+ real = list()
62
+ fake = list()
63
+ # YouTube-real
64
+ for _ in ids[0]:
65
+ real.extend(glob(join(self.root, 'YouTube-real', 'images', _, '*.png')))
66
+ # Celeb-real
67
+ for _ in ids[1]:
68
+ real.extend(glob(join(self.root, 'Celeb-real', 'images', _, '*.png')))
69
+ # Celeb-synthesis
70
+ for _ in ids[2]:
71
+ fake.extend(glob(join(self.root, 'Celeb-synthesis', 'images', _, '*.png')))
72
+ print(f"Real: {len(real)}, Fake: {len(fake)}")
73
+ if balance:
74
+ fake = np.random.choice(fake, size=len(real), replace=False)
75
+ print(f"After Balance | Real: {len(real)}, Fake: {len(fake)}")
76
+ real_tgt = [0] * len(real)
77
+ fake_tgt = [1] * len(fake)
78
+ return [*real, *fake], [*real_tgt, *fake_tgt]
79
+
80
+
81
+ if __name__ == '__main__':
82
+ import yaml
83
+
84
+ config_path = "../config/dataset/celeb_df.yml"
85
+ with open(config_path) as config_file:
86
+ config = yaml.load(config_file, Loader=yaml.FullLoader)
87
+ config = config["train_cfg"]
88
+ # config = config["test_cfg"]
89
+
90
+ def run_dataset():
91
+ dataset = CelebDF(config)
92
+ print(f"dataset: {len(dataset)}")
93
+ for i, _ in enumerate(dataset):
94
+ path, target = _
95
+ print(f"path: {path}, target: {target}")
96
+ if i >= 9:
97
+ break
98
+
99
+
100
+ def run_dataloader(display_samples=False):
101
+ from torch.utils import data
102
+ import matplotlib.pyplot as plt
103
+
104
+ dataset = CelebDF(config)
105
+ dataloader = data.DataLoader(dataset, batch_size=8, shuffle=True)
106
+ print(f"dataset: {len(dataset)}")
107
+ for i, _ in enumerate(dataloader):
108
+ path, targets = _
109
+ image = dataloader.dataset.load_item(path)
110
+ print(f"image: {image.shape}, target: {targets}")
111
+ if display_samples:
112
+ plt.figure()
113
+ img = image[0].permute([1, 2, 0]).numpy()
114
+ plt.imshow(img)
115
+ # plt.savefig("./img_" + str(i) + ".png")
116
+ plt.show()
117
+ if i >= 9:
118
+ break
119
+
120
+
121
+ ###########################
122
+ # run the functions below #
123
+ ###########################
124
+
125
+ # run_dataset()
126
+ run_dataloader(False)
dataset/dfdc.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ from glob import glob
3
+ from os.path import join
4
+ from dataset import AbstractDataset
5
+
6
+ SPLIT = ["train", "val", "test"]
7
+ LABEL_MAP = {"REAL": 0, "FAKE": 1}
8
+
9
+
10
+ class DFDC(AbstractDataset):
11
+ """
12
+ Deepfake Detection Challenge organized by Facebook
13
+ """
14
+
15
+ def __init__(self, cfg, seed=2022, transforms=None, transform=None, target_transform=None):
16
+ # pre-check
17
+ if cfg['split'] not in SPLIT:
18
+ raise ValueError(f"split should be one of {SPLIT}, but found {cfg['split']}.")
19
+ super(DFDC, self).__init__(cfg, seed, transforms, transform, target_transform)
20
+ print(f"Loading data from 'DFDC' of split '{cfg['split']}'"
21
+ f"\nPlease wait patiently...")
22
+ self.categories = ['original', 'fake']
23
+ self.root = cfg['root']
24
+ self.num_real = 0
25
+ self.num_fake = 0
26
+ if self.split == "test":
27
+ self.__load_test_data()
28
+ elif self.split == "train":
29
+ self.__load_train_data()
30
+ assert len(self.images) == len(self.targets), "Length of images and targets not the same!"
31
+ print(f"Data from 'DFDC' loaded.")
32
+ print(f"Real: {self.num_real}, Fake: {self.num_fake}.")
33
+ print(f"Dataset contains {len(self.images)} images\n")
34
+
35
+ def __load_test_data(self):
36
+ label_path = join(self.root, "test", "labels.csv")
37
+ with open(label_path, encoding="utf-8") as file:
38
+ content = file.readlines()
39
+ for _ in content:
40
+ if ".mp4" in _:
41
+ key = _.split(".")[0]
42
+ label = _.split(",")[1].strip()
43
+ label = int(label)
44
+ imgs = glob(join(self.root, "test", "images", key, "*.png"))
45
+ num = len(imgs)
46
+ self.images.extend(imgs)
47
+ self.targets.extend([label] * num)
48
+ if label == 0:
49
+ self.num_real += num
50
+ elif label == 1:
51
+ self.num_fake += num
52
+
53
+ def __load_train_data(self):
54
+ train_folds = glob(join(self.root, "dfdc_train_part_*"))
55
+ for fold in train_folds:
56
+ fold_imgs = list()
57
+ fold_tgts = list()
58
+ metadata_path = join(fold, "metadata.json")
59
+ try:
60
+ with open(metadata_path, "r", encoding="utf-8") as file:
61
+ metadata = json.loads(file.readline())
62
+ for k, v in metadata.items():
63
+ index = k.split(".")[0]
64
+ label = LABEL_MAP[v["label"]]
65
+ imgs = glob(join(fold, "images", index, "*.png"))
66
+ fold_imgs.extend(imgs)
67
+ fold_tgts.extend([label] * len(imgs))
68
+ if label == 0:
69
+ self.num_real += len(imgs)
70
+ elif label == 1:
71
+ self.num_fake += len(imgs)
72
+ self.images.extend(fold_imgs)
73
+ self.targets.extend(fold_tgts)
74
+ except FileNotFoundError:
75
+ continue
76
+
77
+
78
+ if __name__ == '__main__':
79
+ import yaml
80
+
81
+ config_path = "../config/dataset/dfdc.yml"
82
+ with open(config_path) as config_file:
83
+ config = yaml.load(config_file, Loader=yaml.FullLoader)
84
+ config = config["train_cfg"]
85
+ # config = config["test_cfg"]
86
+
87
+
88
+ def run_dataset():
89
+ dataset = DFDC(config)
90
+ print(f"dataset: {len(dataset)}")
91
+ for i, _ in enumerate(dataset):
92
+ path, target = _
93
+ print(f"path: {path}, target: {target}")
94
+ if i >= 9:
95
+ break
96
+
97
+
98
+ def run_dataloader(display_samples=False):
99
+ from torch.utils import data
100
+ import matplotlib.pyplot as plt
101
+
102
+ dataset = DFDC(config)
103
+ dataloader = data.DataLoader(dataset, batch_size=8, shuffle=True)
104
+ print(f"dataset: {len(dataset)}")
105
+ for i, _ in enumerate(dataloader):
106
+ path, targets = _
107
+ image = dataloader.dataset.load_item(path)
108
+ print(f"image: {image.shape}, target: {targets}")
109
+ if display_samples:
110
+ plt.figure()
111
+ img = image[0].permute([1, 2, 0]).numpy()
112
+ plt.imshow(img)
113
+ # plt.savefig("./img_" + str(i) + ".png")
114
+ plt.show()
115
+ if i >= 9:
116
+ break
117
+
118
+
119
+ ###########################
120
+ # run the functions below #
121
+ ###########################
122
+
123
+ # run_dataset()
124
+ run_dataloader(False)
dataset/faceforensics.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+ from os.path import join
4
+ from dataset import AbstractDataset
5
+
6
+ METHOD = ['all', 'Deepfakes', 'Face2Face', 'FaceSwap', 'NeuralTextures']
7
+ SPLIT = ['train', 'val', 'test']
8
+ COMP2NAME = {'c0': 'raw', 'c23': 'c23', 'c40': 'c40'}
9
+ SOURCE_MAP = {'youtube': 2, 'Deepfakes': 3, 'Face2Face': 4, 'FaceSwap': 5, 'NeuralTextures': 6}
10
+
11
+
12
+ class FaceForensics(AbstractDataset):
13
+ """
14
+ FaceForensics++ Dataset proposed in "FaceForensics++: Learning to Detect Manipulated Facial Images"
15
+ """
16
+
17
+ def __init__(self, cfg, seed=2022, transforms=None, transform=None, target_transform=None):
18
+ # pre-check
19
+ if cfg['split'] not in SPLIT:
20
+ raise ValueError(f"split should be one of {SPLIT}, "
21
+ f"but found {cfg['split']}.")
22
+ if cfg['method'] not in METHOD:
23
+ raise ValueError(f"method should be one of {METHOD}, "
24
+ f"but found {cfg['method']}.")
25
+ if cfg['compression'] not in COMP2NAME.keys():
26
+ raise ValueError(f"compression should be one of {COMP2NAME.keys()}, "
27
+ f"but found {cfg['compression']}.")
28
+ super(FaceForensics, self).__init__(
29
+ cfg, seed, transforms, transform, target_transform)
30
+ print(f"Loading data from 'FF++ {cfg['method']}' of split '{cfg['split']}' "
31
+ f"and compression '{cfg['compression']}'\nPlease wait patiently...")
32
+
33
+ self.categories = ['original', 'fake']
34
+ # load the path of dataset images
35
+ indices = join(self.root, cfg['split'] + "_" + cfg['compression'] + ".pickle")
36
+ indices = torch.load(indices)
37
+ if cfg['method'] == "all":
38
+ # full dataset
39
+ self.images = [join(cfg['root'], _[0]) for _ in indices]
40
+ self.targets = [_[1] for _ in indices]
41
+ else:
42
+ # specific manipulated method
43
+ self.images = list()
44
+ self.targets = list()
45
+ nums = 0
46
+ for _ in indices:
47
+ if cfg['method'] in _[0]:
48
+ self.images.append(join(cfg['root'], _[0]))
49
+ self.targets.append(_[1])
50
+ nums = len(self.targets)
51
+ ori = list()
52
+ for _ in indices:
53
+ if "original_sequences" in _[0]:
54
+ ori.append(join(cfg['root'], _[0]))
55
+ choices = np.random.choice(ori, size=nums, replace=False)
56
+ self.images.extend(choices)
57
+ self.targets.extend([0] * nums)
58
+ print("Data from 'FF++' loaded.\n")
59
+ print(f"Dataset contains {len(self.images)} images.\n")
60
+
61
+
62
+ if __name__ == '__main__':
63
+ import yaml
64
+
65
+ config_path = "../config/dataset/faceforensics.yml"
66
+ with open(config_path) as config_file:
67
+ config = yaml.load(config_file, Loader=yaml.FullLoader)
68
+ config = config["train_cfg"]
69
+ # config = config["test_cfg"]
70
+
71
+ def run_dataset():
72
+ dataset = FaceForensics(config)
73
+ print(f"dataset: {len(dataset)}")
74
+ for i, _ in enumerate(dataset):
75
+ path, target = _
76
+ print(f"path: {path}, target: {target}")
77
+ if i >= 9:
78
+ break
79
+
80
+
81
+ def run_dataloader(display_samples=False):
82
+ from torch.utils import data
83
+ import matplotlib.pyplot as plt
84
+
85
+ dataset = FaceForensics(config)
86
+ dataloader = data.DataLoader(dataset, batch_size=8, shuffle=True)
87
+ print(f"dataset: {len(dataset)}")
88
+ for i, _ in enumerate(dataloader):
89
+ path, targets = _
90
+ image = dataloader.dataset.load_item(path)
91
+ print(f"image: {image.shape}, target: {targets}")
92
+ if display_samples:
93
+ plt.figure()
94
+ img = image[0].permute([1, 2, 0]).numpy()
95
+ plt.imshow(img)
96
+ # plt.savefig("./img_" + str(i) + ".png")
97
+ plt.show()
98
+ if i >= 9:
99
+ break
100
+
101
+
102
+ ###########################
103
+ # run the functions below #
104
+ ###########################
105
+
106
+ # run_dataset()
107
+ run_dataloader(False)
dataset/wild_deepfake.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+ from os.path import join
4
+ from dataset import AbstractDataset
5
+
6
+ SPLITS = ["train", "test"]
7
+
8
+
9
+ class WildDeepfake(AbstractDataset):
10
+ """
11
+ Wild Deepfake Dataset proposed in "WildDeepfake: A Challenging Real-World Dataset for Deepfake Detection"
12
+ """
13
+
14
+ def __init__(self, cfg, seed=2022, transforms=None, transform=None, target_transform=None):
15
+ # pre-check
16
+ if cfg['split'] not in SPLITS:
17
+ raise ValueError(f"split should be one of {SPLITS}, but found {cfg['split']}.")
18
+ super(WildDeepfake, self).__init__(cfg, seed, transforms, transform, target_transform)
19
+ print(f"Loading data from 'WildDeepfake' of split '{cfg['split']}'"
20
+ f"\nPlease wait patiently...")
21
+ self.categories = ['original', 'fake']
22
+ self.root = cfg['root']
23
+ self.num_train = cfg.get('num_image_train', None)
24
+ self.num_test = cfg.get('num_image_test', None)
25
+ self.images, self.targets = self.__get_images()
26
+ print(f"Data from 'WildDeepfake' loaded.")
27
+ print(f"Dataset contains {len(self.images)} images.\n")
28
+
29
+ def __get_images(self):
30
+ if self.split == 'train':
31
+ num = self.num_train
32
+ elif self.split == 'test':
33
+ num = self.num_test
34
+ else:
35
+ num = None
36
+ real_images = torch.load(join(self.root, self.split, "real.pickle"))
37
+ if num is not None:
38
+ real_images = np.random.choice(real_images, num // 3, replace=False)
39
+ real_tgts = [torch.tensor(0)] * len(real_images)
40
+ print(f"real: {len(real_tgts)}")
41
+ fake_images = torch.load(join(self.root, self.split, "fake.pickle"))
42
+ if num is not None:
43
+ fake_images = np.random.choice(fake_images, num - num // 3, replace=False)
44
+ fake_tgts = [torch.tensor(1)] * len(fake_images)
45
+ print(f"fake: {len(fake_tgts)}")
46
+ return real_images + fake_images, real_tgts + fake_tgts
47
+
48
+ def __getitem__(self, index):
49
+ path = join(self.root, self.split, self.images[index])
50
+ tgt = self.targets[index]
51
+ return path, tgt
52
+
53
+
54
+ if __name__ == '__main__':
55
+ import yaml
56
+
57
+ config_path = "../config/dataset/wilddeepfake.yml"
58
+ with open(config_path) as config_file:
59
+ config = yaml.load(config_file, Loader=yaml.FullLoader)
60
+ config = config["train_cfg"]
61
+ # config = config["test_cfg"]
62
+
63
+
64
+ def run_dataset():
65
+ dataset = WildDeepfake(config)
66
+ print(f"dataset: {len(dataset)}")
67
+ for i, _ in enumerate(dataset):
68
+ path, target = _
69
+ print(f"path: {path}, target: {target}")
70
+ if i >= 9:
71
+ break
72
+
73
+
74
+ def run_dataloader(display_samples=False):
75
+ from torch.utils import data
76
+ import matplotlib.pyplot as plt
77
+
78
+ dataset = WildDeepfake(config)
79
+ dataloader = data.DataLoader(dataset, batch_size=8, shuffle=True)
80
+ print(f"dataset: {len(dataset)}")
81
+ for i, _ in enumerate(dataloader):
82
+ path, targets = _
83
+ image = dataloader.dataset.load_item(path)
84
+ print(f"image: {image.shape}, target: {targets}")
85
+ if display_samples:
86
+ plt.figure()
87
+ img = image[0].permute([1, 2, 0]).numpy()
88
+ plt.imshow(img)
89
+ # plt.savefig("./img_" + str(i) + ".png")
90
+ plt.show()
91
+ if i >= 9:
92
+ break
93
+
94
+
95
+ ###########################
96
+ # run the functions below #
97
+ ###########################
98
+
99
+ # run_dataset()
100
+ run_dataloader(False)
extract_video.py ADDED
@@ -0,0 +1,233 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from os.path import join
3
+ import argparse
4
+ import numpy as np
5
+ import cv2
6
+ import torch
7
+ from tqdm import tqdm
8
+
9
+ from data import cfg_mnet, cfg_re50
10
+ from layers.functions.prior_box import PriorBox
11
+ from utils.nms.py_cpu_nms import py_cpu_nms
12
+ from models.retinaface import RetinaFace
13
+ from utils.box_utils import decode
14
+
15
+ np.random.seed(0)
16
+
17
+
18
+ def check_keys(model, pretrained_state_dict):
19
+ ckpt_keys = set(pretrained_state_dict.keys())
20
+ model_keys = set(model.state_dict().keys())
21
+ used_pretrained_keys = model_keys & ckpt_keys
22
+ unused_pretrained_keys = ckpt_keys - model_keys
23
+ missing_keys = model_keys - ckpt_keys
24
+ print('Missing keys:{}'.format(len(missing_keys)))
25
+ print('Unused checkpoint keys:{}'.format(len(unused_pretrained_keys)))
26
+ print('Used keys:{}'.format(len(used_pretrained_keys)))
27
+ assert len(used_pretrained_keys) > 0, 'load NONE from pretrained checkpoint'
28
+ return True
29
+
30
+
31
+ def remove_prefix(state_dict, prefix):
32
+ ''' Old style model is stored with all names of parameters sharing common prefix 'module.' '''
33
+ print('remove prefix \'{}\''.format(prefix))
34
+
35
+ def f(x): return x.split(prefix, 1)[-1] if x.startswith(prefix) else x
36
+
37
+ return {f(key): value for key, value in state_dict.items()}
38
+
39
+
40
+ def load_model(model, pretrained_path, load_to_cpu):
41
+ print('Loading pretrained model from {}'.format(pretrained_path))
42
+ if load_to_cpu:
43
+ pretrained_dict = torch.load(
44
+ pretrained_path, map_location=lambda storage, loc: storage)
45
+ else:
46
+ pretrained_dict = torch.load(
47
+ pretrained_path, map_location=lambda storage, loc: storage.cuda(device))
48
+ if "state_dict" in pretrained_dict.keys():
49
+ pretrained_dict = remove_prefix(
50
+ pretrained_dict['state_dict'], 'module.')
51
+ else:
52
+ pretrained_dict = remove_prefix(pretrained_dict, 'module.')
53
+ check_keys(model, pretrained_dict)
54
+ model.load_state_dict(pretrained_dict, strict=False)
55
+ model.to(device)
56
+ return model
57
+
58
+
59
+ def detect(img_list, output_path, resize=1):
60
+ os.makedirs(output_path, exist_ok=True)
61
+ im_height, im_width, _ = img_list[0].shape
62
+ scale = torch.Tensor([im_width, im_height, im_width, im_height])
63
+ img_x = torch.stack(img_list, dim=0).permute([0, 3, 1, 2])
64
+ scale = scale.to(device)
65
+
66
+ # batch size
67
+ batch_size = args.bs
68
+ # forward times
69
+ f_times = img_x.shape[0] // batch_size
70
+ if img_x.shape[0] % batch_size != 0:
71
+ f_times += 1
72
+ locs_list = list()
73
+ confs_list = list()
74
+ for _ in range(f_times):
75
+ if _ != f_times - 1:
76
+ batch_img_x = img_x[_ * batch_size:(_ + 1) * batch_size]
77
+ else:
78
+ batch_img_x = img_x[_ * batch_size:] # last batch
79
+ batch_img_x = batch_img_x.to(device).float()
80
+ l, c, _ = net(batch_img_x)
81
+ locs_list.append(l)
82
+ confs_list.append(c)
83
+ locs = torch.cat(locs_list, dim=0)
84
+ confs = torch.cat(confs_list, dim=0)
85
+
86
+ priorbox = PriorBox(cfg, image_size=(im_height, im_width))
87
+ priors = priorbox.forward()
88
+ priors = priors.to(device)
89
+ prior_data = priors.data
90
+
91
+ img_cpu = img_x.permute([0, 2, 3, 1]).cpu().numpy()
92
+ i = 0
93
+ for img, loc, conf in zip(img_cpu, locs, confs):
94
+ boxes = decode(loc.data, prior_data, cfg['variance'])
95
+ boxes = boxes * scale / resize
96
+ boxes = boxes.cpu().numpy()
97
+ scores = conf.data.cpu().numpy()[:, 1]
98
+
99
+ # ignore low scores
100
+ inds = np.where(scores > args.confidence_threshold)[0]
101
+ boxes = boxes[inds]
102
+ scores = scores[inds]
103
+
104
+ # keep top-K before NMS
105
+ order = scores.argsort()[::-1][:args.top_k]
106
+ boxes = boxes[order]
107
+ scores = scores[order]
108
+
109
+ # do NMS
110
+ dets = np.hstack((boxes, scores[:, np.newaxis])).astype(
111
+ np.float32, copy=False)
112
+ keep = py_cpu_nms(dets, args.nms_threshold)
113
+ # keep = nms(dets, args.nms_threshold,force_cpu=args.cpu)
114
+ dets = dets[keep, :]
115
+
116
+ # keep top-K faster NMS
117
+ dets = dets[:args.keep_top_k, :]
118
+
119
+ if len(dets) == 0:
120
+ continue
121
+ det = list(map(int, dets[0]))
122
+ x, y, size_bb_x, size_bb_y = get_boundingbox(det, img.shape[1], img.shape[0])
123
+ cropped_img = img[y:y + size_bb_y, x:x + size_bb_x, :] + (104, 117, 123)
124
+ cv2.imwrite(join(output_path, '{:04d}.png'.format(i)), cropped_img)
125
+ i += 1
126
+ pass
127
+
128
+
129
+ def extract_frames(data_path, interval=1):
130
+ """Method to extract frames"""
131
+ if data_path.split('.')[-1] == "mp4":
132
+ reader = cv2.VideoCapture(data_path)
133
+ frame_num = 0
134
+ frames = list()
135
+
136
+ while reader.isOpened():
137
+ success, image = reader.read()
138
+ if not success:
139
+ break
140
+ cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
141
+ image = torch.tensor(image) - torch.tensor([104, 117, 123])
142
+ if frame_num % interval == 0:
143
+ frames.append(image)
144
+ frame_num += 1
145
+ if len(frames) > args.max_frames:
146
+ break
147
+ reader.release()
148
+ if len(frames) > args.max_frames:
149
+ samples = np.random.choice(
150
+ np.arange(0, len(frames)), size=args.max_frames, replace=False)
151
+ return [frames[_] for _ in samples]
152
+ return frames
153
+ else:
154
+ image = cv2.imread(data_path)
155
+ cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
156
+ image = torch.tensor(image) - torch.tensor([104, 117, 123])
157
+ return [image]
158
+
159
+
160
+ def get_boundingbox(bbox, width, height, scale=1.8, minsize=None):
161
+ x1 = bbox[0]
162
+ y1 = bbox[1]
163
+ x2 = bbox[2]
164
+ y2 = bbox[3]
165
+ size_bb_x = int((x2 - x1) * scale)
166
+ size_bb_y = int((y2 - y1) * scale)
167
+ if minsize:
168
+ if size_bb_x < minsize:
169
+ size_bb_x = minsize
170
+ if size_bb_y < minsize:
171
+ size_bb_y = minsize
172
+ center_x, center_y = (x1 + x2) // 2, (y1 + y2) // 2
173
+
174
+ # Check for out of bounds, x-y top left corner
175
+ x1 = max(int(center_x - size_bb_x // 2), 0)
176
+ y1 = max(int(center_y - size_bb_y // 2), 0)
177
+ # Check for too big bb size for given x, y
178
+ size_bb_x = min(width - x1, size_bb_x)
179
+ size_bb_y = min(height - y1, size_bb_y)
180
+ return x1, y1, size_bb_x, size_bb_y
181
+
182
+
183
+ def extract_method_videos(data_path, interval):
184
+ video = data_path.split('/')[-1]
185
+ result_path = '/'.join(data_path.split('/')[:-1])
186
+ images_path = join(result_path, 'images')
187
+
188
+ image_folder = video.split('.')[0]
189
+ try:
190
+ print(data_path)
191
+ image_list = extract_frames(data_path, interval)
192
+ detect(image_list, join(images_path, image_folder))
193
+ except Exception as ex:
194
+ f = open("failure.txt", "a", encoding="utf-8")
195
+ f.writelines(image_folder +
196
+ f" Exception for {image_folder}: {ex}\n")
197
+ f.close()
198
+
199
+
200
+ if __name__ == '__main__':
201
+ p = argparse.ArgumentParser(
202
+ formatter_class=argparse.ArgumentDefaultsHelpFormatter
203
+ )
204
+ p.add_argument('--data_path', '-p', type=str, help='path to the data')
205
+ p.add_argument('--confidence_threshold', default=0.05,
206
+ type=float, help='confidence threshold')
207
+ p.add_argument('--top_k', default=5, type=int, help='top_k')
208
+ p.add_argument('--nms_threshold', default=0.4,
209
+ type=float, help='nms threshold')
210
+ p.add_argument('--keep_top_k', default=1, type=int, help='keep_top_k')
211
+ p.add_argument('--bs', default=32, type=int, help='batch size')
212
+ p.add_argument('--frame_interval', '-fi', default=1, type=int, help='frame interval')
213
+ p.add_argument('--device', "-d", default="cuda:0", type=str, help='device')
214
+ p.add_argument('--max_frames', default=100, type=int, help='maximum frames per video')
215
+
216
+ args = p.parse_args()
217
+
218
+ torch.set_grad_enabled(False)
219
+ # use resnet-50
220
+ cfg = cfg_re50
221
+ pretrained_weights = './weights/Resnet50_Final.pth'
222
+
223
+ torch.backends.cudnn.benchmark = True
224
+ device = torch.device(args.device)
225
+ print(device)
226
+
227
+ # net and model
228
+ net = RetinaFace(cfg=cfg, phase='test')
229
+ net = load_model(net, pretrained_weights, args.device)
230
+ net.eval()
231
+ print('Finished loading model!')
232
+
233
+ extract_method_videos(args.data_path, args.frame_interval)
inference.py ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import torch
3
+ import random
4
+ import argparse
5
+ from glob import glob
6
+ from os.path import join
7
+ from model.network import Recce
8
+ from model.common import freeze_weights
9
+ from albumentations import Compose, Normalize, Resize
10
+ from albumentations.pytorch.transforms import ToTensorV2
11
+
12
+ import os
13
+
14
+ os.environ['KMP_DUPLICATE_LIB_OK']='True'
15
+
16
+ # fix random seed
17
+ seed = 0
18
+ random.seed(seed)
19
+ torch.manual_seed(seed)
20
+ torch.cuda.manual_seed(seed)
21
+ torch.cuda.manual_seed_all(seed)
22
+
23
+ parser = argparse.ArgumentParser(description="This code helps you use a trained model to "
24
+ "do inference.")
25
+ parser.add_argument("--weight", "-w",
26
+ type=str,
27
+ default=None,
28
+ help="Specify the path to the model weight (the state dict file). "
29
+ "Do not use this argument when '--bin' is set.")
30
+ parser.add_argument("--bin", "-b",
31
+ type=str,
32
+ default=None,
33
+ help="Specify the path to the model bin which ends up with '.bin' "
34
+ "(which is generated by the trainer of this project). "
35
+ "Do not use this argument when '--weight' is set.")
36
+ parser.add_argument("--image", "-i",
37
+ type=str,
38
+ default=None,
39
+ help="Specify the path to the input image. "
40
+ "Do not use this argument when '--image_folder' is set.")
41
+ parser.add_argument("--image_folder", "-f",
42
+ type=str,
43
+ default=None,
44
+ help="Specify the directory to evaluate all the images. "
45
+ "Do not use this argument when '--image' is set.")
46
+
47
+ parser.add_argument('--device', '-d', type=str,
48
+ default="cpu",
49
+ help="Specify the device to load the model. Default: 'cpu'.")
50
+ parser.add_argument('--image_size', '-s', type=int,
51
+ default=299,
52
+ help="Specify the spatial size of the input image(s). Default: 299.")
53
+ parser.add_argument('--visualize', '-v', action="store_true",
54
+ default=False, help='Visualize images.')
55
+
56
+
57
+ def preprocess(file_path):
58
+ img = cv2.imread(file_path)
59
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
60
+ compose = Compose([Resize(height=args.image_size, width=args.image_size),
61
+ Normalize(mean=[0.5] * 3, std=[0.5] * 3),
62
+ ToTensorV2()])
63
+ img = compose(image=img)['image'].unsqueeze(0)
64
+ return img
65
+
66
+
67
+ def prepare_data():
68
+ paths = list()
69
+ images = list()
70
+ # check the console arguments
71
+ if args.image and args.image_folder:
72
+ raise ValueError("Only one of '--image' or '--image_folder' can be set.")
73
+ elif args.image:
74
+ images.append(preprocess(args.image))
75
+ paths.append(args.image)
76
+ elif args.image_folder:
77
+ image_folder = '.'.join(args.image_folder.split('.')[:-1])
78
+ image_paths = glob(image_folder + "/*.jpg")
79
+ image_paths.extend(glob(image_folder + "/*.png"))
80
+ for _ in image_paths:
81
+ images.append(preprocess(_))
82
+ paths.append(_)
83
+ else:
84
+ raise ValueError("Neither of '--image' nor '--image_folder' is set. Please specify either "
85
+ "one of these two arguments to load input image(s) properly.")
86
+ return paths, images
87
+
88
+
89
+ def inference(model, images, paths, device):
90
+ mean_pred = 0
91
+ for img, pt in zip(images, paths):
92
+ img = img.to(device)
93
+ prediction = model(img)
94
+ prediction = torch.sigmoid(prediction).cpu()
95
+ fake = True if prediction >= 0.5 else False
96
+
97
+ mean_pred += prediction.item()
98
+
99
+ print(f"path: {pt} \t\t| fake probability: {prediction.item():.4f} \t| "
100
+ f"prediction: {'fake' if fake else 'real'}")
101
+ if args.visualize:
102
+ cvimg = cv2.imread(pt)
103
+ cvimg = cv2.putText(cvimg, f'p: {prediction.item():.2f}, ' + f"{'fake' if fake else 'real'}",
104
+ (5, 50), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
105
+ (0, 0, 255) if fake else (255, 0, 0), 2)
106
+ cv2.imshow("image", cvimg)
107
+ cv2.waitKey(0)
108
+ cv2.destroyWindow("image")
109
+ mean_pred = mean_pred / len(images)
110
+ return mean_pred
111
+
112
+
113
+ def main():
114
+ print("Arguments:\n", args, end="\n\n")
115
+ # set device
116
+ device = torch.device(args.device)
117
+ # load model
118
+ model = eval("Recce")(num_classes=1)
119
+ # check the console arguments
120
+ if args.weight and args.bin:
121
+ raise ValueError("Only one of '--weight' or '--bin' can be set.")
122
+ elif args.weight:
123
+ weights = torch.load(args.weight, map_location="cpu")
124
+ elif args.bin:
125
+ weights = torch.load(args.bin, map_location="cpu")["model"]
126
+ else:
127
+ raise ValueError("Neither of '--weight' nor '--bin' is set. Please specify either "
128
+ "one of these two arguments to load model's weight properly.")
129
+ model.load_state_dict(weights)
130
+ model = model.to(device)
131
+ freeze_weights(model)
132
+ model.eval()
133
+
134
+ paths, images = prepare_data()
135
+ print("Inference:")
136
+ mean_pred = inference(model, images=images, paths=paths, device=device)
137
+ print("Mean prediction:", mean_pred)
138
+
139
+
140
+ if __name__ == '__main__':
141
+ args = parser.parse_args()
142
+ main()
layers/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ from .functions import *
2
+ from .modules import *
layers/__pycache__/__init__.cpython-39.pyc ADDED
Binary file (210 Bytes). View file
 
layers/functions/__pycache__/prior_box.cpython-39.pyc ADDED
Binary file (1.86 kB). View file
 
layers/functions/prior_box.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from itertools import product as product
3
+ import numpy as np
4
+ from math import ceil
5
+
6
+
7
+ class PriorBox(object):
8
+ def __init__(self, cfg, image_size=None, phase='train'):
9
+ super(PriorBox, self).__init__()
10
+ self.min_sizes = cfg['min_sizes']
11
+ self.steps = cfg['steps']
12
+ self.clip = cfg['clip']
13
+ self.image_size = image_size
14
+ self.feature_maps = [[ceil(self.image_size[0]/step), ceil(self.image_size[1]/step)] for step in self.steps]
15
+ self.name = "s"
16
+
17
+ def forward(self):
18
+ anchors = []
19
+ for k, f in enumerate(self.feature_maps):
20
+ min_sizes = self.min_sizes[k]
21
+ for i, j in product(range(f[0]), range(f[1])):
22
+ for min_size in min_sizes:
23
+ s_kx = min_size / self.image_size[1]
24
+ s_ky = min_size / self.image_size[0]
25
+ dense_cx = [x * self.steps[k] / self.image_size[1] for x in [j + 0.5]]
26
+ dense_cy = [y * self.steps[k] / self.image_size[0] for y in [i + 0.5]]
27
+ for cy, cx in product(dense_cy, dense_cx):
28
+ anchors += [cx, cy, s_kx, s_ky]
29
+
30
+ # back to torch land
31
+ output = torch.Tensor(anchors).view(-1, 4)
32
+ if self.clip:
33
+ output.clamp_(max=1, min=0)
34
+ return output
layers/modules/__init__.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ from .multibox_loss import MultiBoxLoss
2
+
3
+ __all__ = ['MultiBoxLoss']
layers/modules/__pycache__/__init__.cpython-39.pyc ADDED
Binary file (245 Bytes). View file
 
layers/modules/__pycache__/multibox_loss.cpython-39.pyc ADDED
Binary file (4.27 kB). View file
 
layers/modules/multibox_loss.py ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ from torch.autograd import Variable
5
+ from utils.box_utils import match, log_sum_exp
6
+ from data import cfg_mnet
7
+ GPU = cfg_mnet['gpu_train']
8
+
9
+ class MultiBoxLoss(nn.Module):
10
+ """SSD Weighted Loss Function
11
+ Compute Targets:
12
+ 1) Produce Confidence Target Indices by matching ground truth boxes
13
+ with (default) 'priorboxes' that have jaccard index > threshold parameter
14
+ (default threshold: 0.5).
15
+ 2) Produce localization target by 'encoding' variance into offsets of ground
16
+ truth boxes and their matched 'priorboxes'.
17
+ 3) Hard negative mining to filter the excessive number of negative examples
18
+ that comes with using a large number of default bounding boxes.
19
+ (default negative:positive ratio 3:1)
20
+ Objective Loss:
21
+ L(x,c,l,g) = (Lconf(x, c) + αLloc(x,l,g)) / N
22
+ Where, Lconf is the CrossEntropy Loss and Lloc is the SmoothL1 Loss
23
+ weighted by α which is set to 1 by cross val.
24
+ Args:
25
+ c: class confidences,
26
+ l: predicted boxes,
27
+ g: ground truth boxes
28
+ N: number of matched default boxes
29
+ See: https://arxiv.org/pdf/1512.02325.pdf for more details.
30
+ """
31
+
32
+ def __init__(self, num_classes, overlap_thresh, prior_for_matching, bkg_label, neg_mining, neg_pos, neg_overlap, encode_target):
33
+ super(MultiBoxLoss, self).__init__()
34
+ self.num_classes = num_classes
35
+ self.threshold = overlap_thresh
36
+ self.background_label = bkg_label
37
+ self.encode_target = encode_target
38
+ self.use_prior_for_matching = prior_for_matching
39
+ self.do_neg_mining = neg_mining
40
+ self.negpos_ratio = neg_pos
41
+ self.neg_overlap = neg_overlap
42
+ self.variance = [0.1, 0.2]
43
+
44
+ def forward(self, predictions, priors, targets):
45
+ """Multibox Loss
46
+ Args:
47
+ predictions (tuple): A tuple containing loc preds, conf preds,
48
+ and prior boxes from SSD net.
49
+ conf shape: torch.size(batch_size,num_priors,num_classes)
50
+ loc shape: torch.size(batch_size,num_priors,4)
51
+ priors shape: torch.size(num_priors,4)
52
+
53
+ ground_truth (tensor): Ground truth boxes and labels for a batch,
54
+ shape: [batch_size,num_objs,5] (last idx is the label).
55
+ """
56
+
57
+ loc_data, conf_data, landm_data = predictions
58
+ priors = priors
59
+ num = loc_data.size(0)
60
+ num_priors = (priors.size(0))
61
+
62
+ # match priors (default boxes) and ground truth boxes
63
+ loc_t = torch.Tensor(num, num_priors, 4)
64
+ landm_t = torch.Tensor(num, num_priors, 10)
65
+ conf_t = torch.LongTensor(num, num_priors)
66
+ for idx in range(num):
67
+ truths = targets[idx][:, :4].data
68
+ labels = targets[idx][:, -1].data
69
+ landms = targets[idx][:, 4:14].data
70
+ defaults = priors.data
71
+ match(self.threshold, truths, defaults, self.variance, labels, landms, loc_t, conf_t, landm_t, idx)
72
+ if GPU:
73
+ loc_t = loc_t.cuda()
74
+ conf_t = conf_t.cuda()
75
+ landm_t = landm_t.cuda()
76
+
77
+ zeros = torch.tensor(0).cuda()
78
+ # landm Loss (Smooth L1)
79
+ # Shape: [batch,num_priors,10]
80
+ pos1 = conf_t > zeros
81
+ num_pos_landm = pos1.long().sum(1, keepdim=True)
82
+ N1 = max(num_pos_landm.data.sum().float(), 1)
83
+ pos_idx1 = pos1.unsqueeze(pos1.dim()).expand_as(landm_data)
84
+ landm_p = landm_data[pos_idx1].view(-1, 10)
85
+ landm_t = landm_t[pos_idx1].view(-1, 10)
86
+ loss_landm = F.smooth_l1_loss(landm_p, landm_t, reduction='sum')
87
+
88
+
89
+ pos = conf_t != zeros
90
+ conf_t[pos] = 1
91
+
92
+ # Localization Loss (Smooth L1)
93
+ # Shape: [batch,num_priors,4]
94
+ pos_idx = pos.unsqueeze(pos.dim()).expand_as(loc_data)
95
+ loc_p = loc_data[pos_idx].view(-1, 4)
96
+ loc_t = loc_t[pos_idx].view(-1, 4)
97
+ loss_l = F.smooth_l1_loss(loc_p, loc_t, reduction='sum')
98
+
99
+ # Compute max conf across batch for hard negative mining
100
+ batch_conf = conf_data.view(-1, self.num_classes)
101
+ loss_c = log_sum_exp(batch_conf) - batch_conf.gather(1, conf_t.view(-1, 1))
102
+
103
+ # Hard Negative Mining
104
+ loss_c[pos.view(-1, 1)] = 0 # filter out pos boxes for now
105
+ loss_c = loss_c.view(num, -1)
106
+ _, loss_idx = loss_c.sort(1, descending=True)
107
+ _, idx_rank = loss_idx.sort(1)
108
+ num_pos = pos.long().sum(1, keepdim=True)
109
+ num_neg = torch.clamp(self.negpos_ratio*num_pos, max=pos.size(1)-1)
110
+ neg = idx_rank < num_neg.expand_as(idx_rank)
111
+
112
+ # Confidence Loss Including Positive and Negative Examples
113
+ pos_idx = pos.unsqueeze(2).expand_as(conf_data)
114
+ neg_idx = neg.unsqueeze(2).expand_as(conf_data)
115
+ conf_p = conf_data[(pos_idx+neg_idx).gt(0)].view(-1,self.num_classes)
116
+ targets_weighted = conf_t[(pos+neg).gt(0)]
117
+ loss_c = F.cross_entropy(conf_p, targets_weighted, reduction='sum')
118
+
119
+ # Sum of losses: L(x,c,l,g) = (Lconf(x, c) + αLloc(x,l,g)) / N
120
+ N = max(num_pos.data.sum().float(), 1)
121
+ loss_l /= N
122
+ loss_c /= N
123
+ loss_landm /= N1
124
+
125
+ return loss_l, loss_c, loss_landm
loss/__init__.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+
3
+
4
+ def get_loss(name="cross_entropy", device="cuda:0"):
5
+ print(f"Using loss: '{LOSSES[name]}'")
6
+ return LOSSES[name].to(device)
7
+
8
+
9
+ LOSSES = {
10
+ "binary_ce": nn.BCEWithLogitsLoss(),
11
+ "cross_entropy": nn.CrossEntropyLoss()
12
+ }
model/__init__.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .network import *
2
+ from .common import *
3
+
4
+ MODELS = {
5
+ "Recce": Recce
6
+ }
7
+
8
+
9
+ def load_model(name="Recce"):
10
+ assert name in MODELS.keys(), f"Model name can only be one of {MODELS.keys()}."
11
+ print(f"Using model: '{name}'")
12
+ return MODELS[name]
model/__pycache__/__init__.cpython-39.pyc ADDED
Binary file (454 Bytes). View file
 
model/__pycache__/common.cpython-39.pyc ADDED
Binary file (5.91 kB). View file
 
model/common.py ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+
6
+ def freeze_weights(module):
7
+ for param in module.parameters():
8
+ param.requires_grad = False
9
+
10
+
11
+ def l1_regularize(module):
12
+ reg_loss = 0.
13
+ for key, param in module.reg_params.items():
14
+ if "weight" in key and param.requires_grad:
15
+ reg_loss += torch.sum(torch.abs(param))
16
+ return reg_loss
17
+
18
+
19
+ class SeparableConv2d(nn.Module):
20
+ def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=False):
21
+ super(SeparableConv2d, self).__init__()
22
+
23
+ self.conv1 = nn.Conv2d(in_channels, in_channels, kernel_size, stride, padding, dilation,
24
+ groups=in_channels, bias=bias)
25
+ self.pointwise = nn.Conv2d(in_channels, out_channels, 1, 1, 0, 1, 1, bias=bias)
26
+
27
+ def forward(self, x):
28
+ x = self.conv1(x)
29
+ x = self.pointwise(x)
30
+ return x
31
+
32
+
33
+ class Block(nn.Module):
34
+ def __init__(self, in_channels, out_channels, reps, strides=1,
35
+ start_with_relu=True, grow_first=True, with_bn=True):
36
+ super(Block, self).__init__()
37
+
38
+ self.with_bn = with_bn
39
+
40
+ if out_channels != in_channels or strides != 1:
41
+ self.skip = nn.Conv2d(in_channels, out_channels, 1, stride=strides, bias=False)
42
+ if with_bn:
43
+ self.skipbn = nn.BatchNorm2d(out_channels)
44
+ else:
45
+ self.skip = None
46
+
47
+ rep = []
48
+ for i in range(reps):
49
+ if grow_first:
50
+ inc = in_channels if i == 0 else out_channels
51
+ outc = out_channels
52
+ else:
53
+ inc = in_channels
54
+ outc = in_channels if i < (reps - 1) else out_channels
55
+ rep.append(nn.ReLU(inplace=True))
56
+ rep.append(SeparableConv2d(inc, outc, 3, stride=1, padding=1))
57
+ if with_bn:
58
+ rep.append(nn.BatchNorm2d(outc))
59
+
60
+ if not start_with_relu:
61
+ rep = rep[1:]
62
+ else:
63
+ rep[0] = nn.ReLU(inplace=False)
64
+
65
+ if strides != 1:
66
+ rep.append(nn.MaxPool2d(3, strides, 1))
67
+ self.rep = nn.Sequential(*rep)
68
+
69
+ def forward(self, inp):
70
+ x = self.rep(inp)
71
+
72
+ if self.skip is not None:
73
+ skip = self.skip(inp)
74
+ if self.with_bn:
75
+ skip = self.skipbn(skip)
76
+ else:
77
+ skip = inp
78
+
79
+ x += skip
80
+ return x
81
+
82
+
83
+ class GraphReasoning(nn.Module):
84
+ """ Graph Reasoning Module for information aggregation. """
85
+
86
+ def __init__(self, va_in, va_out, vb_in, vb_out, vc_in, vc_out, spatial_ratio, drop_rate):
87
+ super(GraphReasoning, self).__init__()
88
+ self.ratio = spatial_ratio
89
+ self.va_embedding = nn.Sequential(
90
+ nn.Conv2d(va_in, va_out, 1, bias=False),
91
+ nn.ReLU(True),
92
+ nn.Conv2d(va_out, va_out, 1, bias=False),
93
+ )
94
+ self.va_gated_b = nn.Sequential(
95
+ nn.Conv2d(va_in, va_out, 1, bias=False),
96
+ nn.Sigmoid()
97
+ )
98
+ self.va_gated_c = nn.Sequential(
99
+ nn.Conv2d(va_in, va_out, 1, bias=False),
100
+ nn.Sigmoid()
101
+ )
102
+ self.vb_embedding = nn.Sequential(
103
+ nn.Linear(vb_in, vb_out, bias=False),
104
+ nn.ReLU(True),
105
+ nn.Linear(vb_out, vb_out, bias=False),
106
+ )
107
+ self.vc_embedding = nn.Sequential(
108
+ nn.Linear(vc_in, vc_out, bias=False),
109
+ nn.ReLU(True),
110
+ nn.Linear(vc_out, vc_out, bias=False),
111
+ )
112
+ self.unfold_b = nn.Unfold(kernel_size=spatial_ratio[0], stride=spatial_ratio[0])
113
+ self.unfold_c = nn.Unfold(kernel_size=spatial_ratio[1], stride=spatial_ratio[1])
114
+ self.reweight_ab = nn.Sequential(
115
+ nn.Linear(va_out + vb_out, 1, bias=False),
116
+ nn.ReLU(True),
117
+ nn.Softmax(dim=1)
118
+ )
119
+ self.reweight_ac = nn.Sequential(
120
+ nn.Linear(va_out + vc_out, 1, bias=False),
121
+ nn.ReLU(True),
122
+ nn.Softmax(dim=1)
123
+ )
124
+ self.reproject = nn.Sequential(
125
+ nn.Conv2d(va_out + vb_out + vc_out, va_in, kernel_size=1, bias=False),
126
+ nn.ReLU(True),
127
+ nn.Conv2d(va_in, va_in, kernel_size=1, bias=False),
128
+ nn.Dropout(drop_rate) if drop_rate is not None else nn.Identity(),
129
+ )
130
+
131
+ def forward(self, vert_a, vert_b, vert_c):
132
+ emb_vert_a = self.va_embedding(vert_a)
133
+ emb_vert_a = emb_vert_a.reshape([emb_vert_a.shape[0], emb_vert_a.shape[1], -1])
134
+
135
+ gate_vert_b = 1 - self.va_gated_b(vert_a)
136
+ gate_vert_b = gate_vert_b.reshape(*emb_vert_a.shape)
137
+ gate_vert_c = 1 - self.va_gated_c(vert_a)
138
+ gate_vert_c = gate_vert_c.reshape(*emb_vert_a.shape)
139
+
140
+ vert_b = self.unfold_b(vert_b).reshape(
141
+ [vert_b.shape[0], vert_b.shape[1], self.ratio[0] * self.ratio[0], -1])
142
+ vert_b = vert_b.permute([0, 2, 3, 1])
143
+ emb_vert_b = self.vb_embedding(vert_b)
144
+
145
+ vert_c = self.unfold_c(vert_c).reshape(
146
+ [vert_c.shape[0], vert_c.shape[1], self.ratio[1] * self.ratio[1], -1])
147
+ vert_c = vert_c.permute([0, 2, 3, 1])
148
+ emb_vert_c = self.vc_embedding(vert_c)
149
+
150
+ agg_vb = list()
151
+ agg_vc = list()
152
+ for j in range(emb_vert_a.shape[-1]):
153
+ # ab propagating
154
+ emb_v_a = torch.stack([emb_vert_a[:, :, j]] * (self.ratio[0] ** 2), dim=1)
155
+ emb_v_b = emb_vert_b[:, :, j, :]
156
+ emb_v_ab = torch.cat([emb_v_a, emb_v_b], dim=-1)
157
+ w = self.reweight_ab(emb_v_ab)
158
+ agg_vb.append(torch.bmm(emb_v_b.transpose(1, 2), w).squeeze() * gate_vert_b[:, :, j])
159
+
160
+ # ac propagating
161
+ emb_v_a = torch.stack([emb_vert_a[:, :, j]] * (self.ratio[1] ** 2), dim=1)
162
+ emb_v_c = emb_vert_c[:, :, j, :]
163
+ emb_v_ac = torch.cat([emb_v_a, emb_v_c], dim=-1)
164
+ w = self.reweight_ac(emb_v_ac)
165
+ agg_vc.append(torch.bmm(emb_v_c.transpose(1, 2), w).squeeze() * gate_vert_c[:, :, j])
166
+
167
+ agg_vert_b = torch.stack(agg_vb, dim=-1)
168
+ agg_vert_c = torch.stack(agg_vc, dim=-1)
169
+ agg_vert_bc = torch.cat([agg_vert_b, agg_vert_c], dim=1)
170
+ agg_vert_abc = torch.cat([agg_vert_bc, emb_vert_a], dim=1)
171
+ agg_vert_abc = torch.sigmoid(agg_vert_abc)
172
+ agg_vert_abc = agg_vert_abc.reshape(vert_a.shape[0], -1, vert_a.shape[2], vert_a.shape[3])
173
+ return self.reproject(agg_vert_abc)
174
+
175
+
176
+ class GuidedAttention(nn.Module):
177
+ """ Reconstruction Guided Attention. """
178
+
179
+ def __init__(self, depth=728, drop_rate=0.2):
180
+ super(GuidedAttention, self).__init__()
181
+ self.depth = depth
182
+ self.gated = nn.Sequential(
183
+ nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False),
184
+ nn.ReLU(True),
185
+ nn.Conv2d(3, 1, 1, bias=False),
186
+ nn.Sigmoid()
187
+ )
188
+ self.h = nn.Sequential(
189
+ nn.Conv2d(depth, depth, 1, 1, bias=False),
190
+ nn.BatchNorm2d(depth),
191
+ nn.ReLU(True),
192
+ )
193
+ self.dropout = nn.Dropout(drop_rate)
194
+
195
+ def forward(self, x, pred_x, embedding):
196
+ residual_full = torch.abs(x - pred_x)
197
+ residual_x = F.interpolate(residual_full, size=embedding.shape[-2:],
198
+ mode='bilinear', align_corners=True)
199
+ res_map = self.gated(residual_x)
200
+ return res_map * self.h(embedding) + self.dropout(embedding)
model/network/Recce.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from functools import partial
2
+ from timm.models import xception
3
+ from model.common import SeparableConv2d, Block
4
+ from model.common import GuidedAttention, GraphReasoning
5
+
6
+ import torch
7
+ import torch.nn as nn
8
+ import torch.nn.functional as F
9
+
10
+ encoder_params = {
11
+ "xception": {
12
+ "features": 2048,
13
+ "init_op": partial(xception, pretrained=True)
14
+ }
15
+ }
16
+
17
+
18
+ class Recce(nn.Module):
19
+ """ End-to-End Reconstruction-Classification Learning for Face Forgery Detection """
20
+
21
+ def __init__(self, num_classes, drop_rate=0.2):
22
+ super(Recce, self).__init__()
23
+ self.name = "xception"
24
+ self.loss_inputs = dict()
25
+ self.encoder = encoder_params[self.name]["init_op"]()
26
+ self.global_pool = nn.AdaptiveAvgPool2d((1, 1))
27
+ self.dropout = nn.Dropout(drop_rate)
28
+ self.fc = nn.Linear(encoder_params[self.name]["features"], num_classes)
29
+
30
+ self.attention = GuidedAttention(depth=728, drop_rate=drop_rate)
31
+ self.reasoning = GraphReasoning(728, 256, 256, 256, 128, 256, [2, 4], drop_rate)
32
+
33
+ self.decoder1 = nn.Sequential(
34
+ nn.UpsamplingNearest2d(scale_factor=2),
35
+ SeparableConv2d(728, 256, 3, 1, 1, bias=False),
36
+ nn.BatchNorm2d(256),
37
+ nn.ReLU(inplace=True)
38
+ )
39
+ self.decoder2 = Block(256, 256, 3, 1)
40
+ self.decoder3 = nn.Sequential(
41
+ nn.UpsamplingNearest2d(scale_factor=2),
42
+ SeparableConv2d(256, 128, 3, 1, 1, bias=False),
43
+ nn.BatchNorm2d(128),
44
+ nn.ReLU(inplace=True)
45
+ )
46
+ self.decoder4 = Block(128, 128, 3, 1)
47
+ self.decoder5 = nn.Sequential(
48
+ nn.UpsamplingNearest2d(scale_factor=2),
49
+ SeparableConv2d(128, 64, 3, 1, 1, bias=False),
50
+ nn.BatchNorm2d(64),
51
+ nn.ReLU(inplace=True)
52
+ )
53
+ self.decoder6 = nn.Sequential(
54
+ nn.Conv2d(64, 3, 1, 1, bias=False),
55
+ nn.Tanh()
56
+ )
57
+
58
+ def norm_n_corr(self, x):
59
+ norm_embed = F.normalize(self.global_pool(x), p=2, dim=1)
60
+ corr = (torch.matmul(norm_embed.squeeze(), norm_embed.squeeze().T) + 1.) / 2.
61
+ return norm_embed, corr
62
+
63
+ @staticmethod
64
+ def add_white_noise(tensor, mean=0., std=1e-6):
65
+ rand = torch.rand([tensor.shape[0], 1, 1, 1])
66
+ rand = torch.where(rand > 0.5, 1., 0.).to(tensor.device)
67
+ white_noise = torch.normal(mean, std, size=tensor.shape, device=tensor.device)
68
+ noise_t = tensor + white_noise * rand
69
+ noise_t = torch.clip(noise_t, -1., 1.)
70
+ return noise_t
71
+
72
+ def forward(self, x):
73
+ # clear the loss inputs
74
+ self.loss_inputs = dict(recons=[], contra=[])
75
+ noise_x = self.add_white_noise(x) if self.training else x
76
+ out = self.encoder.conv1(noise_x)
77
+ out = self.encoder.bn1(out)
78
+ out = self.encoder.act1(out)
79
+ out = self.encoder.conv2(out)
80
+ out = self.encoder.bn2(out)
81
+ out = self.encoder.act2(out)
82
+ out = self.encoder.block1(out)
83
+ out = self.encoder.block2(out)
84
+ out = self.encoder.block3(out)
85
+ embedding = self.encoder.block4(out)
86
+
87
+ norm_embed, corr = self.norm_n_corr(embedding)
88
+ self.loss_inputs['contra'].append(corr)
89
+
90
+ out = self.dropout(embedding)
91
+ out = self.decoder1(out)
92
+ out_d2 = self.decoder2(out)
93
+
94
+ norm_embed, corr = self.norm_n_corr(out_d2)
95
+ self.loss_inputs['contra'].append(corr)
96
+
97
+ out = self.decoder3(out_d2)
98
+ out_d4 = self.decoder4(out)
99
+
100
+ norm_embed, corr = self.norm_n_corr(out_d4)
101
+ self.loss_inputs['contra'].append(corr)
102
+
103
+ out = self.decoder5(out_d4)
104
+ pred = self.decoder6(out)
105
+
106
+ recons_x = F.interpolate(pred, size=x.shape[-2:], mode='bilinear', align_corners=True)
107
+ self.loss_inputs['recons'].append(recons_x)
108
+
109
+ embedding = self.encoder.block5(embedding)
110
+ embedding = self.encoder.block6(embedding)
111
+ embedding = self.encoder.block7(embedding)
112
+
113
+ fusion = self.reasoning(embedding, out_d2, out_d4) + embedding
114
+
115
+ embedding = self.encoder.block8(fusion)
116
+ img_att = self.attention(x, recons_x, embedding)
117
+
118
+ embedding = self.encoder.block9(img_att)
119
+ embedding = self.encoder.block10(embedding)
120
+ embedding = self.encoder.block11(embedding)
121
+ embedding = self.encoder.block12(embedding)
122
+
123
+ embedding = self.encoder.conv3(embedding)
124
+ embedding = self.encoder.bn3(embedding)
125
+ embedding = self.encoder.act3(embedding)
126
+ embedding = self.encoder.conv4(embedding)
127
+ embedding = self.encoder.bn4(embedding)
128
+ embedding = self.encoder.act4(embedding)
129
+
130
+ embedding = self.global_pool(embedding).squeeze()
131
+
132
+ out = self.dropout(embedding)
133
+ return self.fc(out)
model/network/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .Recce import Recce
model/network/__pycache__/Recce.cpython-39.pyc ADDED
Binary file (3.8 kB). View file
 
model/network/__pycache__/__init__.cpython-39.pyc ADDED
Binary file (172 Bytes). View file
 
models/__init__.py ADDED
File without changes
models/__pycache__/__init__.cpython-39.pyc ADDED
Binary file (165 Bytes). View file
 
models/__pycache__/net.cpython-39.pyc ADDED
Binary file (4.14 kB). View file
 
models/__pycache__/retinaface.cpython-39.pyc ADDED
Binary file (5.5 kB). View file
 
models/net.py ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+ import torch
3
+ import torch.nn as nn
4
+ import torchvision.models._utils as _utils
5
+ import torchvision.models as models
6
+ import torch.nn.functional as F
7
+ from torch.autograd import Variable
8
+
9
+ def conv_bn(inp, oup, stride = 1, leaky = 0):
10
+ return nn.Sequential(
11
+ nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
12
+ nn.BatchNorm2d(oup),
13
+ nn.LeakyReLU(negative_slope=leaky, inplace=True)
14
+ )
15
+
16
+ def conv_bn_no_relu(inp, oup, stride):
17
+ return nn.Sequential(
18
+ nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
19
+ nn.BatchNorm2d(oup),
20
+ )
21
+
22
+ def conv_bn1X1(inp, oup, stride, leaky=0):
23
+ return nn.Sequential(
24
+ nn.Conv2d(inp, oup, 1, stride, padding=0, bias=False),
25
+ nn.BatchNorm2d(oup),
26
+ nn.LeakyReLU(negative_slope=leaky, inplace=True)
27
+ )
28
+
29
+ def conv_dw(inp, oup, stride, leaky=0.1):
30
+ return nn.Sequential(
31
+ nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False),
32
+ nn.BatchNorm2d(inp),
33
+ nn.LeakyReLU(negative_slope= leaky,inplace=True),
34
+
35
+ nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
36
+ nn.BatchNorm2d(oup),
37
+ nn.LeakyReLU(negative_slope= leaky,inplace=True),
38
+ )
39
+
40
+ class SSH(nn.Module):
41
+ def __init__(self, in_channel, out_channel):
42
+ super(SSH, self).__init__()
43
+ assert out_channel % 4 == 0
44
+ leaky = 0
45
+ if (out_channel <= 64):
46
+ leaky = 0.1
47
+ self.conv3X3 = conv_bn_no_relu(in_channel, out_channel//2, stride=1)
48
+
49
+ self.conv5X5_1 = conv_bn(in_channel, out_channel//4, stride=1, leaky = leaky)
50
+ self.conv5X5_2 = conv_bn_no_relu(out_channel//4, out_channel//4, stride=1)
51
+
52
+ self.conv7X7_2 = conv_bn(out_channel//4, out_channel//4, stride=1, leaky = leaky)
53
+ self.conv7x7_3 = conv_bn_no_relu(out_channel//4, out_channel//4, stride=1)
54
+
55
+ def forward(self, input):
56
+ conv3X3 = self.conv3X3(input)
57
+
58
+ conv5X5_1 = self.conv5X5_1(input)
59
+ conv5X5 = self.conv5X5_2(conv5X5_1)
60
+
61
+ conv7X7_2 = self.conv7X7_2(conv5X5_1)
62
+ conv7X7 = self.conv7x7_3(conv7X7_2)
63
+
64
+ out = torch.cat([conv3X3, conv5X5, conv7X7], dim=1)
65
+ out = F.relu(out)
66
+ return out
67
+
68
+ class FPN(nn.Module):
69
+ def __init__(self,in_channels_list,out_channels):
70
+ super(FPN,self).__init__()
71
+ leaky = 0
72
+ if (out_channels <= 64):
73
+ leaky = 0.1
74
+ self.output1 = conv_bn1X1(in_channels_list[0], out_channels, stride = 1, leaky = leaky)
75
+ self.output2 = conv_bn1X1(in_channels_list[1], out_channels, stride = 1, leaky = leaky)
76
+ self.output3 = conv_bn1X1(in_channels_list[2], out_channels, stride = 1, leaky = leaky)
77
+
78
+ self.merge1 = conv_bn(out_channels, out_channels, leaky = leaky)
79
+ self.merge2 = conv_bn(out_channels, out_channels, leaky = leaky)
80
+
81
+ def forward(self, input):
82
+ # names = list(input.keys())
83
+ input = list(input.values())
84
+
85
+ output1 = self.output1(input[0])
86
+ output2 = self.output2(input[1])
87
+ output3 = self.output3(input[2])
88
+
89
+ up3 = F.interpolate(output3, size=[output2.size(2), output2.size(3)], mode="nearest")
90
+ output2 = output2 + up3
91
+ output2 = self.merge2(output2)
92
+
93
+ up2 = F.interpolate(output2, size=[output1.size(2), output1.size(3)], mode="nearest")
94
+ output1 = output1 + up2
95
+ output1 = self.merge1(output1)
96
+
97
+ out = [output1, output2, output3]
98
+ return out
99
+
100
+
101
+
102
+ class MobileNetV1(nn.Module):
103
+ def __init__(self):
104
+ super(MobileNetV1, self).__init__()
105
+ self.stage1 = nn.Sequential(
106
+ conv_bn(3, 8, 2, leaky = 0.1), # 3
107
+ conv_dw(8, 16, 1), # 7
108
+ conv_dw(16, 32, 2), # 11
109
+ conv_dw(32, 32, 1), # 19
110
+ conv_dw(32, 64, 2), # 27
111
+ conv_dw(64, 64, 1), # 43
112
+ )
113
+ self.stage2 = nn.Sequential(
114
+ conv_dw(64, 128, 2), # 43 + 16 = 59
115
+ conv_dw(128, 128, 1), # 59 + 32 = 91
116
+ conv_dw(128, 128, 1), # 91 + 32 = 123
117
+ conv_dw(128, 128, 1), # 123 + 32 = 155
118
+ conv_dw(128, 128, 1), # 155 + 32 = 187
119
+ conv_dw(128, 128, 1), # 187 + 32 = 219
120
+ )
121
+ self.stage3 = nn.Sequential(
122
+ conv_dw(128, 256, 2), # 219 +3 2 = 241
123
+ conv_dw(256, 256, 1), # 241 + 64 = 301
124
+ )
125
+ self.avg = nn.AdaptiveAvgPool2d((1,1))
126
+ self.fc = nn.Linear(256, 1000)
127
+
128
+ def forward(self, x):
129
+ x = self.stage1(x)
130
+ x = self.stage2(x)
131
+ x = self.stage3(x)
132
+ x = self.avg(x)
133
+ # x = self.model(x)
134
+ x = x.view(-1, 256)
135
+ x = self.fc(x)
136
+ return x
137
+
models/retinaface.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torchvision.models.detection.backbone_utils as backbone_utils
4
+ import torchvision.models._utils as _utils
5
+ import torch.nn.functional as F
6
+ from collections import OrderedDict
7
+
8
+ from models.net import MobileNetV1 as MobileNetV1
9
+ from models.net import FPN as FPN
10
+ from models.net import SSH as SSH
11
+
12
+
13
+
14
+ class ClassHead(nn.Module):
15
+ def __init__(self,inchannels=512,num_anchors=3):
16
+ super(ClassHead,self).__init__()
17
+ self.num_anchors = num_anchors
18
+ self.conv1x1 = nn.Conv2d(inchannels,self.num_anchors*2,kernel_size=(1,1),stride=1,padding=0)
19
+
20
+ def forward(self,x):
21
+ out = self.conv1x1(x)
22
+ out = out.permute(0,2,3,1).contiguous()
23
+
24
+ return out.view(out.shape[0], -1, 2)
25
+
26
+ class BboxHead(nn.Module):
27
+ def __init__(self,inchannels=512,num_anchors=3):
28
+ super(BboxHead,self).__init__()
29
+ self.conv1x1 = nn.Conv2d(inchannels,num_anchors*4,kernel_size=(1,1),stride=1,padding=0)
30
+
31
+ def forward(self,x):
32
+ out = self.conv1x1(x)
33
+ out = out.permute(0,2,3,1).contiguous()
34
+
35
+ return out.view(out.shape[0], -1, 4)
36
+
37
+ class LandmarkHead(nn.Module):
38
+ def __init__(self,inchannels=512,num_anchors=3):
39
+ super(LandmarkHead,self).__init__()
40
+ self.conv1x1 = nn.Conv2d(inchannels,num_anchors*10,kernel_size=(1,1),stride=1,padding=0)
41
+
42
+ def forward(self,x):
43
+ out = self.conv1x1(x)
44
+ out = out.permute(0,2,3,1).contiguous()
45
+
46
+ return out.view(out.shape[0], -1, 10)
47
+
48
+ class RetinaFace(nn.Module):
49
+ def __init__(self, cfg = None, phase = 'train'):
50
+ """
51
+ :param cfg: Network related settings.
52
+ :param phase: train or test.
53
+ """
54
+ super(RetinaFace,self).__init__()
55
+ self.phase = phase
56
+ backbone = None
57
+ if cfg['name'] == 'mobilenet0.25':
58
+ backbone = MobileNetV1()
59
+ if cfg['pretrain']:
60
+ checkpoint = torch.load("./weights/mobilenetV1X0.25_pretrain.tar", map_location=torch.device('cpu'))
61
+ from collections import OrderedDict
62
+ new_state_dict = OrderedDict()
63
+ for k, v in checkpoint['state_dict'].items():
64
+ name = k[7:] # remove module.
65
+ new_state_dict[name] = v
66
+ # load params
67
+ backbone.load_state_dict(new_state_dict)
68
+ elif cfg['name'] == 'Resnet50':
69
+ import torchvision.models as models
70
+ backbone = models.resnet50(pretrained=cfg['pretrain'])
71
+
72
+ self.body = _utils.IntermediateLayerGetter(backbone, cfg['return_layers'])
73
+ in_channels_stage2 = cfg['in_channel']
74
+ in_channels_list = [
75
+ in_channels_stage2 * 2,
76
+ in_channels_stage2 * 4,
77
+ in_channels_stage2 * 8,
78
+ ]
79
+ out_channels = cfg['out_channel']
80
+ self.fpn = FPN(in_channels_list,out_channels)
81
+ self.ssh1 = SSH(out_channels, out_channels)
82
+ self.ssh2 = SSH(out_channels, out_channels)
83
+ self.ssh3 = SSH(out_channels, out_channels)
84
+
85
+ self.ClassHead = self._make_class_head(fpn_num=3, inchannels=cfg['out_channel'])
86
+ self.BboxHead = self._make_bbox_head(fpn_num=3, inchannels=cfg['out_channel'])
87
+ self.LandmarkHead = self._make_landmark_head(fpn_num=3, inchannels=cfg['out_channel'])
88
+
89
+ def _make_class_head(self,fpn_num=3,inchannels=64,anchor_num=2):
90
+ classhead = nn.ModuleList()
91
+ for i in range(fpn_num):
92
+ classhead.append(ClassHead(inchannels,anchor_num))
93
+ return classhead
94
+
95
+ def _make_bbox_head(self,fpn_num=3,inchannels=64,anchor_num=2):
96
+ bboxhead = nn.ModuleList()
97
+ for i in range(fpn_num):
98
+ bboxhead.append(BboxHead(inchannels,anchor_num))
99
+ return bboxhead
100
+
101
+ def _make_landmark_head(self,fpn_num=3,inchannels=64,anchor_num=2):
102
+ landmarkhead = nn.ModuleList()
103
+ for i in range(fpn_num):
104
+ landmarkhead.append(LandmarkHead(inchannels,anchor_num))
105
+ return landmarkhead
106
+
107
+ def forward(self,inputs):
108
+ out = self.body(inputs)
109
+
110
+ # FPN
111
+ fpn = self.fpn(out)
112
+
113
+ # SSH
114
+ feature1 = self.ssh1(fpn[0])
115
+ feature2 = self.ssh2(fpn[1])
116
+ feature3 = self.ssh3(fpn[2])
117
+ features = [feature1, feature2, feature3]
118
+
119
+ bbox_regressions = torch.cat([self.BboxHead[i](feature) for i, feature in enumerate(features)], dim=1)
120
+ classifications = torch.cat([self.ClassHead[i](feature) for i, feature in enumerate(features)],dim=1)
121
+ ldm_regressions = torch.cat([self.LandmarkHead[i](feature) for i, feature in enumerate(features)], dim=1)
122
+
123
+ if self.phase == 'train':
124
+ output = (bbox_regressions, classifications, ldm_regressions)
125
+ else:
126
+ output = (bbox_regressions, F.softmax(classifications, dim=-1), ldm_regressions)
127
+ return output
optimizer/__init__.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch.optim import SGD
2
+ from torch.optim import Adam
3
+ from torch.optim import ASGD
4
+ from torch.optim import Adamax
5
+ from torch.optim import Adadelta
6
+ from torch.optim import Adagrad
7
+ from torch.optim import RMSprop
8
+
9
+ key2opt = {
10
+ 'sgd': SGD,
11
+ 'adam': Adam,
12
+ 'asgd': ASGD,
13
+ 'adamax': Adamax,
14
+ 'adadelta': Adadelta,
15
+ 'adagrad': Adagrad,
16
+ 'rmsprop': RMSprop,
17
+ }
18
+
19
+
20
+ def get_optimizer(optimizer_name=None):
21
+ if optimizer_name is None:
22
+ print("Using default 'SGD' optimizer")
23
+ return SGD
24
+
25
+ else:
26
+ if optimizer_name not in key2opt:
27
+ raise NotImplementedError(f"Optimizer '{optimizer_name}' not implemented")
28
+
29
+ print(f"Using optimizer: '{optimizer_name}'")
30
+ return key2opt[optimizer_name]
requirements.txt ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ albumentations==1.3.1
2
+ bbox==0.9.4
3
+ Cython==0.29.35
4
+ ipython==8.14.0
5
+ matplotlib==3.4.3
6
+ numpy==1.25.0
7
+ numpy==1.21.1
8
+ opencv_python==4.5.5.62
9
+ opencv_python_headless==4.7.0.72
10
+ Pillow==9.3.0
11
+ Pillow==9.4.0
12
+ Pillow==9.5.0
13
+ PyYAML==6.0
14
+ PyYAML==6.0
15
+ scikit_learn==1.2.2
16
+ scipy==1.8.0
17
+ streamlit==1.24.0
18
+ tensorboardX==2.6.1
19
+ timm==0.4.12
20
+ torch==1.10.0
21
+ torch==2.0.1+cu117
22
+ torchvision==0.11.1
23
+ torchvision==0.15.2+cu117
24
+ tqdm==4.65.0
scheduler/__init__.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch.optim.lr_scheduler import _LRScheduler
2
+ from torch.optim.lr_scheduler import StepLR
3
+ from torch.optim.lr_scheduler import MultiStepLR
4
+ from torch.optim.lr_scheduler import ExponentialLR
5
+ from torch.optim.lr_scheduler import CosineAnnealingLR
6
+ from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts
7
+ from torch.optim.lr_scheduler import ReduceLROnPlateau
8
+
9
+
10
+ class ConstantLR(_LRScheduler):
11
+ def __init__(self, optimizer, last_epoch=-1):
12
+ super(ConstantLR, self).__init__(optimizer, last_epoch)
13
+
14
+ def get_lr(self):
15
+ return [base_lr for base_lr in self.base_lrs]
16
+
17
+
18
+ SCHEDULERS = {
19
+ 'ConstantLR': ConstantLR,
20
+ "StepLR": StepLR,
21
+ "MultiStepLR": MultiStepLR,
22
+ "CosineAnnealingLR": CosineAnnealingLR,
23
+ "CosineAnnealingWarmRestarts": CosineAnnealingWarmRestarts,
24
+ "ExponentialLR": ExponentialLR,
25
+ "ReduceLROnPlateau": ReduceLROnPlateau
26
+ }
27
+
28
+
29
+ def get_scheduler(optimizer, kwargs):
30
+ if kwargs is None:
31
+ print("No lr scheduler is used.")
32
+ return ConstantLR(optimizer)
33
+ name = kwargs["name"]
34
+ kwargs.pop("name")
35
+ print("Using scheduler: '%s' with params: %s" % (name, kwargs))
36
+ return SCHEDULERS[name](optimizer, **kwargs)
trainer/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ from .abstract_trainer import AbstractTrainer, LEGAL_METRIC
2
+ from .exp_mgpu_trainer import ExpMultiGpuTrainer
3
+ from .exp_tester import ExpTester
4
+ from .utils import center_print, reduce_tensor
5
+ from .utils import exp_recons_loss
trainer/abstract_trainer.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import random
4
+ from collections import OrderedDict
5
+ from torchvision.utils import make_grid
6
+
7
+ LEGAL_METRIC = ['Acc', 'AUC', 'LogLoss']
8
+
9
+
10
+ class AbstractTrainer(object):
11
+ def __init__(self, config, stage="Train"):
12
+ feasible_stage = ["Train", "Test"]
13
+ if stage not in feasible_stage:
14
+ raise ValueError(f"stage should be in {feasible_stage}, but found '{stage}'")
15
+
16
+ self.config = config
17
+ model_cfg = config.get("model", None)
18
+ data_cfg = config.get("data", None)
19
+ config_cfg = config.get("config", None)
20
+
21
+ self.model_name = model_cfg.pop("name")
22
+
23
+ self.gpu = None
24
+ self.dir = None
25
+ self.debug = None
26
+ self.device = None
27
+ self.resume = None
28
+ self.local_rank = None
29
+ self.num_classes = None
30
+
31
+ self.best_metric = 0.0
32
+ self.best_step = 1
33
+ self.start_step = 1
34
+
35
+ self._initiated_settings(model_cfg, data_cfg, config_cfg)
36
+
37
+ if stage == 'Train':
38
+ self._train_settings(model_cfg, data_cfg, config_cfg)
39
+ if stage == 'Test':
40
+ self._test_settings(model_cfg, data_cfg, config_cfg)
41
+
42
+ def _initiated_settings(self, model_cfg, data_cfg, config_cfg):
43
+ raise NotImplementedError("Not implemented in abstract class.")
44
+
45
+ def _train_settings(self, model_cfg, data_cfg, config_cfg):
46
+ raise NotImplementedError("Not implemented in abstract class.")
47
+
48
+ def _test_settings(self, model_cfg, data_cfg, config_cfg):
49
+ raise NotImplementedError("Not implemented in abstract class.")
50
+
51
+ def _save_ckpt(self, step, best=False):
52
+ raise NotImplementedError("Not implemented in abstract class.")
53
+
54
+ def _load_ckpt(self, best=False, train=False):
55
+ raise NotImplementedError("Not implemented in abstract class.")
56
+
57
+ def to_device(self, items):
58
+ return [obj.to(self.device) for obj in items]
59
+
60
+ @staticmethod
61
+ def fixed_randomness():
62
+ random.seed(0)
63
+ torch.manual_seed(0)
64
+ torch.cuda.manual_seed(0)
65
+ torch.cuda.manual_seed_all(0)
66
+
67
+ def train(self):
68
+ raise NotImplementedError("Not implemented in abstract class.")
69
+
70
+ def validate(self, epoch, step, timer, writer):
71
+ raise NotImplementedError("Not implemented in abstract class.")
72
+
73
+ def test(self):
74
+ raise NotImplementedError("Not implemented in abstract class.")
75
+
76
+ def plot_figure(self, images, pred, gt, nrow, categories=None, show=True):
77
+ import matplotlib.pyplot as plt
78
+ plot = make_grid(
79
+ images, nrow, padding=4, normalize=True, scale_each=True, pad_value=1)
80
+ if self.num_classes == 1:
81
+ pred = (pred >= 0.5).cpu().numpy()
82
+ else:
83
+ pred = pred.argmax(1).cpu().numpy()
84
+ gt = gt.cpu().numpy()
85
+ if categories is not None:
86
+ pred = [categories[i] for i in pred]
87
+ gt = [categories[i] for i in gt]
88
+ plot = plot.permute([1, 2, 0])
89
+ plot = plot.cpu().numpy()
90
+ ret = plt.figure()
91
+ plt.imshow(plot)
92
+ plt.title("pred: %s\ngt: %s" % (pred, gt))
93
+ plt.axis("off")
94
+ if show:
95
+ plt.savefig(os.path.join(self.dir, "test_image.png"), dpi=300)
96
+ plt.show()
97
+ plt.close()
98
+ else:
99
+ plt.close()
100
+ return ret
trainer/exp_mgpu_trainer.py ADDED
@@ -0,0 +1,370 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ import time
4
+ import math
5
+ import yaml
6
+ import torch
7
+ import random
8
+ import numpy as np
9
+
10
+ from tqdm import tqdm
11
+ from pprint import pprint
12
+ from torch.utils import data
13
+ import torch.distributed as dist
14
+ from torch.cuda.amp import autocast, GradScaler
15
+ from tensorboardX import SummaryWriter
16
+
17
+ from dataset import load_dataset
18
+ from loss import get_loss
19
+ from model import load_model
20
+ from optimizer import get_optimizer
21
+ from scheduler import get_scheduler
22
+ from trainer import AbstractTrainer, LEGAL_METRIC
23
+ from trainer.utils import exp_recons_loss, MLLoss, reduce_tensor, center_print
24
+ from trainer.utils import MODELS_PATH, AccMeter, AUCMeter, AverageMeter, Logger, Timer
25
+
26
+
27
+ class ExpMultiGpuTrainer(AbstractTrainer):
28
+ def __init__(self, config, stage="Train"):
29
+ super(ExpMultiGpuTrainer, self).__init__(config, stage)
30
+ np.random.seed(2021)
31
+
32
+ def _mprint(self, content=""):
33
+ if self.local_rank == 0:
34
+ print(content)
35
+
36
+ def _initiated_settings(self, model_cfg=None, data_cfg=None, config_cfg=None):
37
+ self.local_rank = config_cfg["local_rank"]
38
+
39
+ def _train_settings(self, model_cfg, data_cfg, config_cfg):
40
+ # debug mode: no log dir, no train_val operation.
41
+ self.debug = config_cfg["debug"]
42
+ self._mprint(f"Using debug mode: {self.debug}.")
43
+ self._mprint("*" * 20)
44
+
45
+ self.eval_metric = config_cfg["metric"]
46
+ if self.eval_metric not in LEGAL_METRIC:
47
+ raise ValueError(f"Evaluation metric must be in {LEGAL_METRIC}, but found "
48
+ f"{self.eval_metric}.")
49
+ if self.eval_metric == LEGAL_METRIC[-1]:
50
+ self.best_metric = 1.0e8
51
+
52
+ # distribution
53
+ dist.init_process_group(config_cfg["distribute"]["backend"])
54
+
55
+ # load training dataset
56
+ train_dataset = data_cfg["file"]
57
+ branch = data_cfg["train_branch"]
58
+ name = data_cfg["name"]
59
+ with open(train_dataset, "r") as f:
60
+ options = yaml.load(f, Loader=yaml.FullLoader)
61
+ train_options = options[branch]
62
+ self.train_set = load_dataset(name)(train_options)
63
+ # define training sampler
64
+ self.train_sampler = data.distributed.DistributedSampler(self.train_set)
65
+ # wrapped with data loader
66
+ self.train_loader = data.DataLoader(self.train_set, shuffle=False,
67
+ sampler=self.train_sampler,
68
+ num_workers=data_cfg.get("num_workers", 4),
69
+ batch_size=data_cfg["train_batch_size"])
70
+
71
+ if self.local_rank == 0:
72
+ # load validation dataset
73
+ val_options = options[data_cfg["val_branch"]]
74
+ self.val_set = load_dataset(name)(val_options)
75
+ # wrapped with data loader
76
+ self.val_loader = data.DataLoader(self.val_set, shuffle=True,
77
+ num_workers=data_cfg.get("num_workers", 4),
78
+ batch_size=data_cfg["val_batch_size"])
79
+
80
+ self.resume = config_cfg.get("resume", False)
81
+
82
+ if not self.debug:
83
+ time_format = "%Y-%m-%d...%H.%M.%S"
84
+ run_id = time.strftime(time_format, time.localtime(time.time()))
85
+ self.run_id = config_cfg.get("id", run_id)
86
+ self.dir = os.path.join("runs", self.model_name, self.run_id)
87
+
88
+ if self.local_rank == 0:
89
+ if not self.resume:
90
+ if os.path.exists(self.dir):
91
+ raise ValueError("Error: given id '%s' already exists." % self.run_id)
92
+ os.makedirs(self.dir, exist_ok=True)
93
+ print(f"Writing config file to file directory: {self.dir}.")
94
+ yaml.dump({"config": self.config,
95
+ "train_data": train_options,
96
+ "val_data": val_options},
97
+ open(os.path.join(self.dir, 'train_config.yml'), 'w'))
98
+ # copy the script for the training model
99
+ model_file = MODELS_PATH[self.model_name]
100
+ os.system("cp " + model_file + " " + self.dir)
101
+ else:
102
+ print(f"Resuming the history in file directory: {self.dir}.")
103
+
104
+ print(f"Logging directory: {self.dir}.")
105
+
106
+ # redirect the std out stream
107
+ sys.stdout = Logger(os.path.join(self.dir, 'records.txt'))
108
+ center_print('Train configurations begins.')
109
+ pprint(self.config)
110
+ pprint(train_options)
111
+ pprint(val_options)
112
+ center_print('Train configurations ends.')
113
+
114
+ # load model
115
+ self.num_classes = model_cfg["num_classes"]
116
+ self.device = "cuda:" + str(self.local_rank)
117
+ self.model = load_model(self.model_name)(**model_cfg)
118
+ self.model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.model).to(self.device)
119
+ self._mprint(f"Using SyncBatchNorm.")
120
+ self.model = torch.nn.parallel.DistributedDataParallel(
121
+ self.model, device_ids=[self.local_rank], find_unused_parameters=True)
122
+
123
+ # load optimizer
124
+ optim_cfg = config_cfg.get("optimizer", None)
125
+ optim_name = optim_cfg.pop("name")
126
+ self.optimizer = get_optimizer(optim_name)(self.model.parameters(), **optim_cfg)
127
+ # load scheduler
128
+ self.scheduler = get_scheduler(self.optimizer, config_cfg.get("scheduler", None))
129
+ # load loss
130
+ self.loss_criterion = get_loss(config_cfg.get("loss", None), device=self.device)
131
+
132
+ # total number of steps (or epoch) to train
133
+ self.num_steps = train_options["num_steps"]
134
+ self.num_epoch = math.ceil(self.num_steps / len(self.train_loader))
135
+
136
+ # the number of steps to write down a log
137
+ self.log_steps = train_options["log_steps"]
138
+ # the number of steps to validate on val dataset once
139
+ self.val_steps = train_options["val_steps"]
140
+
141
+ # balance coefficients
142
+ self.lambda_1 = config_cfg["lambda_1"]
143
+ self.lambda_2 = config_cfg["lambda_2"]
144
+ self.warmup_step = config_cfg.get('warmup_step', 0)
145
+
146
+ self.contra_loss = MLLoss()
147
+ self.acc_meter = AccMeter()
148
+ self.loss_meter = AverageMeter()
149
+ self.recons_loss_meter = AverageMeter()
150
+ self.contra_loss_meter = AverageMeter()
151
+
152
+ if self.resume and self.local_rank == 0:
153
+ self._load_ckpt(best=config_cfg.get("resume_best", False), train=True)
154
+
155
+ def _test_settings(self, model_cfg, data_cfg, config_cfg):
156
+ # Not used.
157
+ raise NotImplementedError("The function is not intended to be used here.")
158
+
159
+ def _load_ckpt(self, best=False, train=False):
160
+ # Not used.
161
+ raise NotImplementedError("The function is not intended to be used here.")
162
+
163
+ def _save_ckpt(self, step, best=False):
164
+ save_dir = os.path.join(self.dir, f"best_model_{step}.bin" if best else "latest_model.bin")
165
+ torch.save({
166
+ "step": step,
167
+ "best_step": self.best_step,
168
+ "best_metric": self.best_metric,
169
+ "eval_metric": self.eval_metric,
170
+ "model": self.model.module.state_dict(),
171
+ "optimizer": self.optimizer.state_dict(),
172
+ "scheduler": self.scheduler.state_dict(),
173
+ }, save_dir)
174
+
175
+ def train(self):
176
+ try:
177
+ timer = Timer()
178
+ grad_scalar = GradScaler(2 ** 10)
179
+ if self.local_rank == 0:
180
+ writer = None if self.debug else SummaryWriter(log_dir=self.dir)
181
+ center_print("Training begins......")
182
+ else:
183
+ writer = None
184
+ start_epoch = self.start_step // len(self.train_loader) + 1
185
+ for epoch_idx in range(start_epoch, self.num_epoch + 1):
186
+ # set sampler
187
+ self.train_sampler.set_epoch(epoch_idx)
188
+
189
+ # reset meter
190
+ self.acc_meter.reset()
191
+ self.loss_meter.reset()
192
+ self.recons_loss_meter.reset()
193
+ self.contra_loss_meter.reset()
194
+ self.optimizer.step()
195
+
196
+ train_generator = enumerate(self.train_loader, 1)
197
+ # wrap train generator with tqdm for process 0
198
+ if self.local_rank == 0:
199
+ train_generator = tqdm(train_generator, position=0, leave=True)
200
+
201
+ for batch_idx, train_data in train_generator:
202
+ global_step = (epoch_idx - 1) * len(self.train_loader) + batch_idx
203
+ self.model.train()
204
+ I, Y = train_data
205
+ I = self.train_loader.dataset.load_item(I)
206
+ in_I, Y = self.to_device((I, Y))
207
+
208
+ # warm-up lr
209
+ if self.warmup_step != 0 and global_step <= self.warmup_step:
210
+ lr = self.config['config']['optimizer']['lr'] * float(global_step) / self.warmup_step
211
+ for param_group in self.optimizer.param_groups:
212
+ param_group['lr'] = lr
213
+
214
+ self.optimizer.zero_grad()
215
+ with autocast():
216
+ Y_pre = self.model(in_I)
217
+
218
+ # for BCE Setting:
219
+ if self.num_classes == 1:
220
+ Y_pre = Y_pre.squeeze()
221
+ loss = self.loss_criterion(Y_pre, Y.float())
222
+ Y_pre = torch.sigmoid(Y_pre)
223
+ else:
224
+ loss = self.loss_criterion(Y_pre, Y)
225
+
226
+ # flood
227
+ loss = (loss - 0.04).abs() + 0.04
228
+ recons_loss = exp_recons_loss(self.model.module.loss_inputs['recons'], (in_I, Y))
229
+ contra_loss = self.contra_loss(self.model.module.loss_inputs['contra'], Y)
230
+ loss += self.lambda_1 * recons_loss + self.lambda_2 * contra_loss
231
+
232
+ grad_scalar.scale(loss).backward()
233
+ grad_scalar.step(self.optimizer)
234
+ grad_scalar.update()
235
+ if self.warmup_step == 0 or global_step > self.warmup_step:
236
+ self.scheduler.step()
237
+
238
+ self.acc_meter.update(Y_pre, Y, self.num_classes == 1)
239
+ self.loss_meter.update(reduce_tensor(loss).item())
240
+ self.recons_loss_meter.update(reduce_tensor(recons_loss).item())
241
+ self.contra_loss_meter.update(reduce_tensor(contra_loss).item())
242
+ iter_acc = reduce_tensor(self.acc_meter.mean_acc()).item()
243
+
244
+ if self.local_rank == 0:
245
+ if global_step % self.log_steps == 0 and writer is not None:
246
+ writer.add_scalar("train/Acc", iter_acc, global_step)
247
+ writer.add_scalar("train/Loss", self.loss_meter.avg, global_step)
248
+ writer.add_scalar("train/Recons_Loss",
249
+ self.recons_loss_meter.avg if self.lambda_1 != 0 else 0.,
250
+ global_step)
251
+ writer.add_scalar("train/Contra_Loss", self.contra_loss_meter.avg, global_step)
252
+ writer.add_scalar("train/LR", self.scheduler.get_last_lr()[0], global_step)
253
+
254
+ # log training step
255
+ train_generator.set_description(
256
+ "Train Epoch %d (%d/%d), Global Step %d, Loss %.4f, Recons %.4f, con %.4f, "
257
+ "ACC %.4f, LR %.6f" % (
258
+ epoch_idx, batch_idx, len(self.train_loader), global_step,
259
+ self.loss_meter.avg, self.recons_loss_meter.avg, self.contra_loss_meter.avg,
260
+ iter_acc, self.scheduler.get_last_lr()[0])
261
+ )
262
+
263
+ # validating process
264
+ if global_step % self.val_steps == 0 and not self.debug:
265
+ print()
266
+ self.validate(epoch_idx, global_step, timer, writer)
267
+
268
+ # when num_steps has been set and the training process will
269
+ # be stopped earlier than the specified num_epochs, then stop.
270
+ if self.num_steps is not None and global_step == self.num_steps:
271
+ if writer is not None:
272
+ writer.close()
273
+ if self.local_rank == 0:
274
+ print()
275
+ center_print("Training process ends.")
276
+ dist.destroy_process_group()
277
+ return
278
+ # close the tqdm bar when one epoch ends
279
+ if self.local_rank == 0:
280
+ train_generator.close()
281
+ print()
282
+ # training ends with integer epochs
283
+ if self.local_rank == 0:
284
+ if writer is not None:
285
+ writer.close()
286
+ center_print("Training process ends.")
287
+ dist.destroy_process_group()
288
+ except Exception as e:
289
+ dist.destroy_process_group()
290
+ raise e
291
+
292
+ def validate(self, epoch, step, timer, writer):
293
+ v_idx = random.randint(1, len(self.val_loader) + 1)
294
+ categories = self.val_loader.dataset.categories
295
+ self.model.eval()
296
+ with torch.no_grad():
297
+ acc = AccMeter()
298
+ auc = AUCMeter()
299
+ loss_meter = AverageMeter()
300
+ cur_acc = 0.0 # Higher is better
301
+ cur_auc = 0.0 # Higher is better
302
+ cur_loss = 1e8 # Lower is better
303
+ val_generator = tqdm(enumerate(self.val_loader, 1), position=0, leave=True)
304
+ for val_idx, val_data in val_generator:
305
+ I, Y = val_data
306
+ I = self.val_loader.dataset.load_item(I)
307
+ in_I, Y = self.to_device((I, Y))
308
+ Y_pre = self.model(in_I)
309
+
310
+ # for BCE Setting:
311
+ if self.num_classes == 1:
312
+ Y_pre = Y_pre.squeeze()
313
+ loss = self.loss_criterion(Y_pre, Y.float())
314
+ Y_pre = torch.sigmoid(Y_pre)
315
+ else:
316
+ loss = self.loss_criterion(Y_pre, Y)
317
+
318
+ acc.update(Y_pre, Y, self.num_classes == 1)
319
+ auc.update(Y_pre, Y, self.num_classes == 1)
320
+ loss_meter.update(loss.item())
321
+
322
+ cur_acc = acc.mean_acc()
323
+ cur_loss = loss_meter.avg
324
+
325
+ val_generator.set_description(
326
+ "Eval Epoch %d (%d/%d), Global Step %d, Loss %.4f, ACC %.4f" % (
327
+ epoch, val_idx, len(self.val_loader), step,
328
+ cur_loss, cur_acc)
329
+ )
330
+
331
+ if val_idx == v_idx or val_idx == 1:
332
+ sample_recons = list()
333
+ for _ in self.model.module.loss_inputs['recons']:
334
+ sample_recons.append(_[:4].to("cpu"))
335
+ # show images
336
+ images = I[:4]
337
+ images = torch.cat([images, *sample_recons], dim=0)
338
+ pred = Y_pre[:4]
339
+ gt = Y[:4]
340
+ figure = self.plot_figure(images, pred, gt, 4, categories, show=False)
341
+
342
+ cur_auc = auc.mean_auc()
343
+ print("Eval Epoch %d, Loss %.4f, ACC %.4f, AUC %.4f" % (epoch, cur_loss, cur_acc, cur_auc))
344
+ if writer is not None:
345
+ writer.add_scalar("val/Loss", cur_loss, step)
346
+ writer.add_scalar("val/Acc", cur_acc, step)
347
+ writer.add_scalar("val/AUC", cur_auc, step)
348
+ writer.add_figure("val/Figures", figure, step)
349
+ # record the best acc and the corresponding step
350
+ if self.eval_metric == 'Acc' and cur_acc >= self.best_metric:
351
+ self.best_metric = cur_acc
352
+ self.best_step = step
353
+ self._save_ckpt(step, best=True)
354
+ elif self.eval_metric == 'AUC' and cur_auc >= self.best_metric:
355
+ self.best_metric = cur_auc
356
+ self.best_step = step
357
+ self._save_ckpt(step, best=True)
358
+ elif self.eval_metric == 'LogLoss' and cur_loss <= self.best_metric:
359
+ self.best_metric = cur_loss
360
+ self.best_step = step
361
+ self._save_ckpt(step, best=True)
362
+ print("Best Step %d, Best %s %.4f, Running Time: %s, Estimated Time: %s" % (
363
+ self.best_step, self.eval_metric, self.best_metric,
364
+ timer.measure(), timer.measure(step / self.num_steps)
365
+ ))
366
+ self._save_ckpt(step, best=False)
367
+
368
+ def test(self):
369
+ # Not used.
370
+ raise NotImplementedError("The function is not intended to be used here.")
trainer/exp_tester.py ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ import yaml
4
+ import torch
5
+ import random
6
+
7
+ from tqdm import tqdm
8
+ from pprint import pprint
9
+ from torch.utils import data
10
+
11
+ from dataset import load_dataset
12
+ from loss import get_loss
13
+ from model import load_model
14
+ from model.common import freeze_weights
15
+ from trainer import AbstractTrainer
16
+ from trainer.utils import AccMeter, AUCMeter, AverageMeter, Logger, center_print
17
+
18
+
19
+ class ExpTester(AbstractTrainer):
20
+ def __init__(self, config, stage="Test"):
21
+ super(ExpTester, self).__init__(config, stage)
22
+
23
+ if torch.cuda.is_available() and self.device is not None:
24
+ print(f"Using cuda device: {self.device}.")
25
+ self.gpu = True
26
+ self.model = self.model.to(self.device)
27
+ else:
28
+ print("Using cpu device.")
29
+ self.device = torch.device("cpu")
30
+
31
+ def _initiated_settings(self, model_cfg=None, data_cfg=None, config_cfg=None):
32
+ self.gpu = False
33
+ self.device = config_cfg.get("device", None)
34
+
35
+ def _train_settings(self, model_cfg=None, data_cfg=None, config_cfg=None):
36
+ # Not used.
37
+ raise NotImplementedError("The function is not intended to be used here.")
38
+
39
+ def _test_settings(self, model_cfg=None, data_cfg=None, config_cfg=None):
40
+ # load test dataset
41
+ test_dataset = data_cfg["file"]
42
+ branch = data_cfg["test_branch"]
43
+ name = data_cfg["name"]
44
+ with open(test_dataset, "r") as f:
45
+ options = yaml.load(f, Loader=yaml.FullLoader)
46
+ test_options = options[branch]
47
+ self.test_set = load_dataset(name)(test_options)
48
+ # wrapped with data loader
49
+ self.test_batch_size = data_cfg["test_batch_size"]
50
+ self.test_loader = data.DataLoader(self.test_set, shuffle=False,
51
+ batch_size=self.test_batch_size)
52
+ self.run_id = config_cfg["id"]
53
+ self.ckpt_fold = config_cfg.get("ckpt_fold", "runs")
54
+ self.dir = os.path.join(self.ckpt_fold, self.model_name, self.run_id)
55
+
56
+ # load model
57
+ self.num_classes = model_cfg["num_classes"]
58
+ self.model = load_model(self.model_name)(**model_cfg)
59
+
60
+ # load loss
61
+ self.loss_criterion = get_loss(config_cfg.get("loss", None))
62
+
63
+ # redirect the std out stream
64
+ sys.stdout = Logger(os.path.join(self.dir, "test_result.txt"))
65
+ print('Run dir: {}'.format(self.dir))
66
+
67
+ center_print('Test configurations begins')
68
+ pprint(self.config)
69
+ pprint(test_options)
70
+ center_print('Test configurations ends')
71
+
72
+ self.ckpt = config_cfg.get("ckpt", "best_model")
73
+ self._load_ckpt(best=True, train=False)
74
+
75
+ def _save_ckpt(self, step, best=False):
76
+ # Not used.
77
+ raise NotImplementedError("The function is not intended to be used here.")
78
+
79
+ def _load_ckpt(self, best=False, train=False):
80
+ load_dir = os.path.join(self.dir, self.ckpt + ".bin" if best else "latest_model.bin")
81
+ load_dict = torch.load(load_dir, map_location=self.device)
82
+ self.start_step = load_dict["step"]
83
+ self.best_step = load_dict["best_step"]
84
+ self.best_metric = load_dict.get("best_metric", None)
85
+ if self.best_metric is None:
86
+ self.best_metric = load_dict.get("best_acc")
87
+ self.eval_metric = load_dict.get("eval_metric", None)
88
+ if self.eval_metric is None:
89
+ self.eval_metric = load_dict.get("Acc")
90
+ self.model.load_state_dict(load_dict["model"])
91
+ print(f"Loading checkpoint from {load_dir}, best step: {self.best_step}, "
92
+ f"best {self.eval_metric}: {round(self.best_metric.item(), 4)}.")
93
+
94
+ def train(self):
95
+ # Not used.
96
+ raise NotImplementedError("The function is not intended to be used here.")
97
+
98
+ def validate(self, epoch, step, timer, writer):
99
+ # Not used.
100
+ raise NotImplementedError("The function is not intended to be used here.")
101
+
102
+ def test(self, display_images=False):
103
+ freeze_weights(self.model)
104
+ t_idx = random.randint(1, len(self.test_loader) + 1)
105
+ self.fixed_randomness() # for reproduction
106
+
107
+ acc = AccMeter()
108
+ auc = AUCMeter()
109
+ logloss = AverageMeter()
110
+ test_generator = tqdm(enumerate(self.test_loader, 1))
111
+ categories = self.test_loader.dataset.categories
112
+ for idx, test_data in test_generator:
113
+ self.model.eval()
114
+ I, Y = test_data
115
+ I = self.test_loader.dataset.load_item(I)
116
+ if self.gpu:
117
+ in_I, Y = self.to_device((I, Y))
118
+ else:
119
+ in_I, Y = (I, Y)
120
+ Y_pre = self.model(in_I)
121
+
122
+ # for BCE Setting:
123
+ if self.num_classes == 1:
124
+ Y_pre = Y_pre.squeeze()
125
+ loss = self.loss_criterion(Y_pre, Y.float())
126
+ Y_pre = torch.sigmoid(Y_pre)
127
+ else:
128
+ loss = self.loss_criterion(Y_pre, Y)
129
+
130
+ acc.update(Y_pre, Y, use_bce=self.num_classes == 1)
131
+ auc.update(Y_pre, Y, use_bce=self.num_classes == 1)
132
+ logloss.update(loss.item())
133
+
134
+ test_generator.set_description("Test %d/%d" % (idx, len(self.test_loader)))
135
+ if display_images and idx == t_idx:
136
+ # show images
137
+ images = I[:4]
138
+ pred = Y_pre[:4]
139
+ gt = Y[:4]
140
+ self.plot_figure(images, pred, gt, 2, categories)
141
+
142
+ print("Test, FINAL LOSS %.4f, FINAL ACC %.4f, FINAL AUC %.4f" %
143
+ (logloss.avg, acc.mean_acc(), auc.mean_auc()))
144
+ auc.curve(self.dir)
trainer/utils.py ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ import time
4
+ import torch
5
+ import torch.nn as nn
6
+ import torch.nn.functional as F
7
+ import torch.distributed as dist
8
+ from collections import OrderedDict
9
+
10
+ import numpy as np
11
+ from sklearn.metrics import roc_auc_score, roc_curve
12
+ from scipy.optimize import brentq
13
+ from scipy.interpolate import interp1d
14
+
15
+ # Tracking the path to the definition of the model.
16
+ MODELS_PATH = {
17
+ "Recce": "model/network/Recce.py"
18
+ }
19
+
20
+
21
+ def exp_recons_loss(recons, x):
22
+ x, y = x
23
+ loss = torch.tensor(0., device=y.device)
24
+ real_index = torch.where(1 - y)[0]
25
+ for r in recons:
26
+ if real_index.numel() > 0:
27
+ real_x = torch.index_select(x, dim=0, index=real_index)
28
+ real_rec = torch.index_select(r, dim=0, index=real_index)
29
+ real_rec = F.interpolate(real_rec, size=x.shape[-2:], mode='bilinear', align_corners=True)
30
+ loss += torch.mean(torch.abs(real_rec - real_x))
31
+ return loss
32
+
33
+
34
+ def center_print(content, around='*', repeat_around=10):
35
+ num = repeat_around
36
+ s = around
37
+ print(num * s + ' %s ' % content + num * s)
38
+
39
+
40
+ def reduce_tensor(t):
41
+ rt = t.clone()
42
+ dist.all_reduce(rt)
43
+ rt /= float(dist.get_world_size())
44
+ return rt
45
+
46
+
47
+ def tensor2image(tensor):
48
+ image = tensor.permute([1, 2, 0]).cpu().detach().numpy()
49
+ return (image - np.min(image)) / (np.max(image) - np.min(image))
50
+
51
+
52
+ def state_dict(state_dict):
53
+ """ Remove 'module' keyword in state dictionary. """
54
+ weights = OrderedDict()
55
+ for k, v in state_dict.items():
56
+ weights.update({k.replace("module.", ""): v})
57
+ return weights
58
+
59
+
60
+ class Logger(object):
61
+ def __init__(self, filename):
62
+ self.terminal = sys.stdout
63
+ self.log = open(filename, "a")
64
+
65
+ def write(self, message):
66
+ self.terminal.write(message)
67
+ self.log.write(message)
68
+ self.log.flush()
69
+
70
+ def flush(self):
71
+ pass
72
+
73
+
74
+ class Timer(object):
75
+ """The class for timer."""
76
+
77
+ def __init__(self):
78
+ self.o = time.time()
79
+
80
+ def measure(self, p=1):
81
+ x = (time.time() - self.o) / p
82
+ x = int(x)
83
+ if x >= 3600:
84
+ return '{:.1f}h'.format(x / 3600)
85
+ if x >= 60:
86
+ return '{}m'.format(round(x / 60))
87
+ return '{}s'.format(x)
88
+
89
+
90
+ class MLLoss(nn.Module):
91
+ def __init__(self):
92
+ super(MLLoss, self).__init__()
93
+
94
+ def forward(self, input, target, eps=1e-6):
95
+ # 0 - real; 1 - fake.
96
+ loss = torch.tensor(0., device=target.device)
97
+ batch_size = target.shape[0]
98
+ mat_1 = torch.hstack([target.unsqueeze(-1)] * batch_size)
99
+ mat_2 = torch.vstack([target] * batch_size)
100
+ diff_mat = torch.logical_xor(mat_1, mat_2).float()
101
+ or_mat = torch.logical_or(mat_1, mat_2)
102
+ eye = torch.eye(batch_size, device=target.device)
103
+ or_mat = torch.logical_or(or_mat, eye).float()
104
+ sim_mat = 1. - or_mat
105
+ for _ in input:
106
+ diff = torch.sum(_ * diff_mat, dim=[0, 1]) / (torch.sum(diff_mat, dim=[0, 1]) + eps)
107
+ sim = torch.sum(_ * sim_mat, dim=[0, 1]) / (torch.sum(sim_mat, dim=[0, 1]) + eps)
108
+ partial_loss = 1. - sim + diff
109
+ loss += max(partial_loss, torch.zeros_like(partial_loss))
110
+ return loss
111
+
112
+
113
+ class AccMeter(object):
114
+ def __init__(self):
115
+ self.nums = 0
116
+ self.acc = 0
117
+
118
+ def reset(self):
119
+ self.nums = 0
120
+ self.acc = 0
121
+
122
+ def update(self, pred, target, use_bce=False):
123
+ if use_bce:
124
+ pred = (pred >= 0.5).int()
125
+ else:
126
+ pred = pred.argmax(1)
127
+ self.nums += target.shape[0]
128
+ self.acc += torch.sum(pred == target)
129
+
130
+ def mean_acc(self):
131
+ return self.acc / self.nums
132
+
133
+
134
+ class AUCMeter(object):
135
+ def __init__(self):
136
+ self.score = None
137
+ self.true = None
138
+
139
+ def reset(self):
140
+ self.score = None
141
+ self.true = None
142
+
143
+ def update(self, score, true, use_bce=False):
144
+ if use_bce:
145
+ score = score.detach().cpu().numpy()
146
+ else:
147
+ score = torch.softmax(score.detach(), dim=-1)
148
+ score = torch.select(score, 1, 1).cpu().numpy()
149
+ true = true.flatten().cpu().numpy()
150
+ self.score = score if self.score is None else np.concatenate([self.score, score])
151
+ self.true = true if self.true is None else np.concatenate([self.true, true])
152
+
153
+ def mean_auc(self):
154
+ return roc_auc_score(self.true, self.score)
155
+
156
+ def curve(self, prefix):
157
+ fpr, tpr, thresholds = roc_curve(self.true, self.score, pos_label=1)
158
+ eer = brentq(lambda x: 1. - x - interp1d(fpr, tpr)(x), 0., 1.)
159
+ thresh = interp1d(fpr, thresholds)(eer)
160
+ print(f"# EER: {eer:.4f}(thresh: {thresh:.4f})")
161
+ torch.save([fpr, tpr, thresholds], os.path.join(prefix, "roc_curve.pickle"))
162
+
163
+
164
+ class AverageMeter(object):
165
+ """Computes and stores the average and current value"""
166
+
167
+ def __init__(self):
168
+ self.val = 0
169
+ self.avg = 0
170
+ self.sum = 0
171
+ self.count = 0
172
+
173
+ def reset(self):
174
+ self.val = 0
175
+ self.avg = 0
176
+ self.sum = 0
177
+ self.count = 0
178
+
179
+ def update(self, val, n=1):
180
+ self.val = val
181
+ self.sum += val * n
182
+ self.count += n
183
+ self.avg = self.sum / self.count