Spaces:
Running
Running
| import gradio as gr | |
| import requests | |
| import random | |
| import os | |
| import zipfile | |
| import librosa | |
| import time | |
| from infer_rvc_python import BaseLoader | |
| from pydub import AudioSegment | |
| from tts_voice import tts_order_voice | |
| import edge_tts | |
| import tempfile | |
| from audio_separator.separator import Separator | |
| import model_handler | |
| import psutil | |
| import cpuinfo | |
| language_dict = tts_order_voice | |
| async def text_to_speech_edge(text, language_code): | |
| voice = language_dict[language_code] | |
| communicate = edge_tts.Communicate(text, voice) | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file: | |
| tmp_path = tmp_file.name | |
| await communicate.save(tmp_path) | |
| return tmp_path | |
| try: | |
| import spaces | |
| spaces_status = True | |
| except ImportError: | |
| spaces_status = False | |
| separator = Separator() | |
| converter = BaseLoader(only_cpu=False, hubert_path=None, rmvpe_path=None) | |
| global pth_file | |
| global index_file | |
| pth_file = "model.pth" | |
| index_file = "model.index" | |
| #CONFIGS | |
| TEMP_DIR = "temp" | |
| MODEL_PREFIX = "model" | |
| PITCH_ALGO_OPT = [ | |
| "pm", | |
| "harvest", | |
| "crepe", | |
| "rmvpe", | |
| "rmvpe+", | |
| ] | |
| UVR_5_MODELS = [ | |
| {"model_name": "BS-Roformer-Viperx-1297", "checkpoint": "model_bs_roformer_ep_317_sdr_12.9755.ckpt"}, | |
| {"model_name": "MDX23C-InstVoc HQ 2", "checkpoint": "MDX23C-8KFFT-InstVoc_HQ_2.ckpt"}, | |
| {"model_name": "Kim Vocal 2", "checkpoint": "Kim_Vocal_2.onnx"}, | |
| {"model_name": "5_HP-Karaoke", "checkpoint": "5_HP-Karaoke-UVR.pth"}, | |
| {"model_name": "UVR-DeNoise by FoxJoy", "checkpoint": "UVR-DeNoise.pth"}, | |
| {"model_name": "UVR-DeEcho-DeReverb by FoxJoy", "checkpoint": "UVR-DeEcho-DeReverb.pth"}, | |
| ] | |
| MODELS = [ | |
| {"model": "model.pth", "index": "model.index", "model_name": "Test Model"}, | |
| ] | |
| os.makedirs(TEMP_DIR, exist_ok=True) | |
| def unzip_file(file): | |
| filename = os.path.basename(file).split(".")[0] | |
| with zipfile.ZipFile(file, 'r') as zip_ref: | |
| zip_ref.extractall(os.path.join(TEMP_DIR, filename)) | |
| return True | |
| def progress_bar(total, current): | |
| return "[" + "=" * int(current / total * 20) + ">" + " " * (20 - int(current / total * 20)) + "] " + str(int(current / total * 100)) + "%" | |
| def download_from_url(url, name=None): | |
| if name is None: | |
| raise ValueError("The model name must be provided") | |
| if "/blob/" in url: | |
| url = url.replace("/blob/", "/resolve/") | |
| if "huggingface" not in url: | |
| return ["The URL must be from huggingface", "Failed", "Failed"] | |
| filename = os.path.join(TEMP_DIR, MODEL_PREFIX + str(random.randint(1, 1000)) + ".zip") | |
| response = requests.get(url) | |
| total = int(response.headers.get('content-length', 0)) | |
| if total > 500000000: | |
| return ["The file is too large. You can only download files up to 500 MB in size.", "Failed", "Failed"] | |
| current = 0 | |
| with open(filename, "wb") as f: | |
| for data in response.iter_content(chunk_size=4096): | |
| f.write(data) | |
| current += len(data) | |
| print(progress_bar(total, current), end="\r") # | |
| try: | |
| unzip_file(filename) | |
| except Exception as e: | |
| return ["Failed to unzip the file", "Failed", "Failed"] | |
| unzipped_dir = os.path.join(TEMP_DIR, os.path.basename(filename).split(".")[0]) | |
| pth_files = [] | |
| index_files = [] | |
| for root, dirs, files in os.walk(unzipped_dir): | |
| for file in files: | |
| if file.endswith(".pth"): | |
| pth_files.append(os.path.join(root, file)) | |
| elif file.endswith(".index"): | |
| index_files.append(os.path.join(root, file)) | |
| print(pth_files, index_files) | |
| global pth_file | |
| global index_file | |
| pth_file = pth_files[0] | |
| index_file = index_files[0] | |
| print(pth_file) | |
| print(index_file) | |
| if name == "": | |
| name = pth_file.split(".")[0] | |
| MODELS.append({"model": pth_file, "index": index_file, "model_name": name}) | |
| return ["Downloaded as " + name, pth_files[0], index_files[0]] | |
| def inference(audio, model_name): | |
| output_data = inf_handler(audio, model_name) | |
| vocals = output_data[0] | |
| inst = output_data[1] | |
| return vocals, inst | |
| if spaces_status: | |
| def convert_now(audio_files, random_tag, converter): | |
| return converter( | |
| audio_files, | |
| random_tag, | |
| overwrite=False, | |
| parallel_workers=8 | |
| ) | |
| else: | |
| def convert_now(audio_files, random_tag, converter): | |
| return converter( | |
| audio_files, | |
| random_tag, | |
| overwrite=False, | |
| parallel_workers=8 | |
| ) | |
| def calculate_remaining_time(epochs, seconds_per_epoch): | |
| total_seconds = epochs * seconds_per_epoch | |
| hours = total_seconds // 3600 | |
| minutes = (total_seconds % 3600) // 60 | |
| seconds = total_seconds % 60 | |
| if hours == 0: | |
| return f"{int(minutes)} minutes" | |
| elif hours == 1: | |
| return f"{int(hours)} hour and {int(minutes)} minutes" | |
| else: | |
| return f"{int(hours)} hours and {int(minutes)} minutes" | |
| def inf_handler(audio, model_name): | |
| model_found = False | |
| for model_info in UVR_5_MODELS: | |
| if model_info["model_name"] == model_name: | |
| separator.load_model(model_info["checkpoint"]) | |
| model_found = True | |
| break | |
| if not model_found: | |
| separator.load_model() | |
| output_files = separator.separate(audio) | |
| vocals = output_files[0] | |
| inst = output_files[1] | |
| return vocals, inst | |
| def run( | |
| model, | |
| audio_files, | |
| pitch_alg, | |
| pitch_lvl, | |
| index_inf, | |
| r_m_f, | |
| e_r, | |
| c_b_p, | |
| ): | |
| if not audio_files: | |
| raise ValueError("The audio pls") | |
| if isinstance(audio_files, str): | |
| audio_files = [audio_files] | |
| try: | |
| duration_base = librosa.get_duration(filename=audio_files[0]) | |
| print("Duration:", duration_base) | |
| except Exception as e: | |
| print(e) | |
| random_tag = "USER_"+str(random.randint(10000000, 99999999)) | |
| file_m = model | |
| print("File model:", file_m) | |
| # get from MODELS | |
| for model in MODELS: | |
| if model["model_name"] == file_m: | |
| print(model) | |
| file_m = model["model"] | |
| file_index = model["index"] | |
| break | |
| if not file_m.endswith(".pth"): | |
| raise ValueError("The model file must be a .pth file") | |
| print("Random tag:", random_tag) | |
| print("File model:", file_m) | |
| print("Pitch algorithm:", pitch_alg) | |
| print("Pitch level:", pitch_lvl) | |
| print("File index:", file_index) | |
| print("Index influence:", index_inf) | |
| print("Respiration median filtering:", r_m_f) | |
| print("Envelope ratio:", e_r) | |
| converter.apply_conf( | |
| tag=random_tag, | |
| file_model=file_m, | |
| pitch_algo=pitch_alg, | |
| pitch_lvl=pitch_lvl, | |
| file_index=file_index, | |
| index_influence=index_inf, | |
| respiration_median_filtering=r_m_f, | |
| envelope_ratio=e_r, | |
| consonant_breath_protection=c_b_p, | |
| resample_sr=44100 if audio_files[0].endswith('.mp3') else 0, | |
| ) | |
| time.sleep(0.1) | |
| result = convert_now(audio_files, random_tag, converter) | |
| print("Result:", result) | |
| return result[0] | |
| def upload_model(index_file, pth_file, model_name): | |
| pth_file = pth_file.name | |
| index_file = index_file.name | |
| MODELS.append({"model": pth_file, "index": index_file, "model_name": model_name}) | |
| return "Uploaded!" | |
| with gr.Blocks(theme=gr.themes.Default(primary_hue="pink", secondary_hue="rose"), title="Ilaria RVC 💖") as demo: | |
| gr.Markdown("## Ilaria RVC 💖") | |
| with gr.Tab("Inference"): | |
| sound_gui = gr.Audio(value=None,type="filepath",autoplay=False,visible=True,) | |
| def update(): | |
| print(MODELS) | |
| return gr.Dropdown(label="Model",choices=[model["model_name"] for model in MODELS],visible=True,interactive=True, value=MODELS[0]["model_name"],) | |
| with gr.Row(): | |
| models_dropdown = gr.Dropdown(label="Model",choices=[model["model_name"] for model in MODELS],visible=True,interactive=True, value=MODELS[0]["model_name"],) | |
| refresh_button = gr.Button("Refresh Models") | |
| refresh_button.click(update, outputs=[models_dropdown]) | |
| with gr.Accordion("Ilaria TTS", open=False): | |
| text_tts = gr.Textbox(label="Text", placeholder="Hello!", lines=3, interactive=True,) | |
| dropdown_tts = gr.Dropdown(label="Language and Model",choices=list(language_dict.keys()),interactive=True, value=list(language_dict.keys())[0]) | |
| button_tts = gr.Button("Speak", variant="primary",) | |
| button_tts.click(text_to_speech_edge, inputs=[text_tts, dropdown_tts], outputs=[sound_gui]) | |
| with gr.Accordion("Settings", open=False): | |
| pitch_algo_conf = gr.Dropdown(PITCH_ALGO_OPT,value=PITCH_ALGO_OPT[4],label="Pitch algorithm",visible=True,interactive=True,) | |
| pitch_lvl_conf = gr.Slider(label="Pitch level (lower -> 'male' while higher -> 'female')",minimum=-24,maximum=24,step=1,value=0,visible=True,interactive=True,) | |
| index_inf_conf = gr.Slider(minimum=0,maximum=1,label="Index influence -> How much accent is applied",value=0.75,) | |
| respiration_filter_conf = gr.Slider(minimum=0,maximum=7,label="Respiration median filtering",value=3,step=1,interactive=True,) | |
| envelope_ratio_conf = gr.Slider(minimum=0,maximum=1,label="Envelope ratio",value=0.25,interactive=True,) | |
| consonant_protec_conf = gr.Slider(minimum=0,maximum=0.5,label="Consonant breath protection",value=0.5,interactive=True,) | |
| button_conf = gr.Button("Convert",variant="primary",) | |
| output_conf = gr.Audio(type="filepath",label="Output",) | |
| button_conf.click(lambda :None, None, output_conf) | |
| button_conf.click( | |
| run, | |
| inputs=[ | |
| models_dropdown, | |
| sound_gui, | |
| pitch_algo_conf, | |
| pitch_lvl_conf, | |
| index_inf_conf, | |
| respiration_filter_conf, | |
| envelope_ratio_conf, | |
| consonant_protec_conf, | |
| ], | |
| outputs=[output_conf], | |
| ) | |
| with gr.Tab("Model Loader (Download and Upload)"): | |
| with gr.Accordion("Model Downloader", open=False): | |
| gr.Markdown( | |
| "Download the model from the following URL and upload it here. (Huggingface RVC model)" | |
| ) | |
| model = gr.Textbox(lines=1, label="Model URL") | |
| name = gr.Textbox(lines=1, label="Model Name", placeholder="Model Name") | |
| download_button = gr.Button("Download Model") | |
| status = gr.Textbox(lines=1, label="Status", placeholder="Waiting....", interactive=False) | |
| model_pth = gr.Textbox(lines=1, label="Model pth file", placeholder="Waiting....", interactive=False) | |
| index_pth = gr.Textbox(lines=1, label="Index pth file", placeholder="Waiting....", interactive=False) | |
| download_button.click(download_from_url, [model, name], outputs=[status, model_pth, index_pth]) | |
| with gr.Accordion("Upload A Model", open=False): | |
| index_file_upload = gr.File(label="Index File (.index)") | |
| pth_file_upload = gr.File(label="Model File (.pth)") | |
| model_name = gr.Textbox(label="Model Name", placeholder="Model Name") | |
| upload_button = gr.Button("Upload Model") | |
| upload_status = gr.Textbox(lines=1, label="Status", placeholder="Waiting....", interactive=False) | |
| upload_button.click(upload_model, [index_file_upload, pth_file_upload, model_name], upload_status) | |
| with gr.Tab("Vocal Separator (UVR)"): | |
| gr.Markdown("Separate vocals and instruments from an audio file using UVR models. - This is only on CPU due to ZeroGPU being ZeroGPU :(") | |
| uvr5_audio_file = gr.Audio(label="Audio File",type="filepath") | |
| with gr.Row(): | |
| uvr5_model = gr.Dropdown(label="Model", choices=[model["model_name"] for model in UVR_5_MODELS]) | |
| uvr5_button = gr.Button("Separate Vocals", variant="primary",) | |
| uvr5_output_voc = gr.Audio(type="filepath", label="Output 1",) | |
| uvr5_output_inst = gr.Audio(type="filepath", label="Output 2",) | |
| uvr5_button.click(inference, [uvr5_audio_file, uvr5_model], [uvr5_output_voc, uvr5_output_inst]) | |
| with gr.Tab("Extra"): | |
| with gr.Accordion("Model Information", open=False): | |
| def json_to_markdown_table(json_data): | |
| table = "| Key | Value |\n| --- | --- |\n" | |
| for key, value in json_data.items(): | |
| table += f"| {key} | {value} |\n" | |
| return table | |
| def model_info(name): | |
| for model in MODELS: | |
| if model["model_name"] == name: | |
| print(model["model"]) | |
| info = model_handler.model_info(model["model"]) | |
| info2 = { | |
| "Model Name": model["model_name"], | |
| "Model Config": info['config'], | |
| "Epochs Trained": info['epochs'], | |
| "Sample Rate": info['sr'], | |
| "Pitch Guidance": info['f0'], | |
| "Model Precision": info['size'], | |
| } | |
| return gr.Markdown(json_to_markdown_table(info2)) | |
| return "Model not found" | |
| def update(): | |
| print(MODELS) | |
| return gr.Dropdown(label="Model", choices=[model["model_name"] for model in MODELS]) | |
| with gr.Row(): | |
| model_info_dropdown = gr.Dropdown(label="Model", choices=[model["model_name"] for model in MODELS]) | |
| refresh_button = gr.Button("Refresh Models") | |
| refresh_button.click(update, outputs=[model_info_dropdown]) | |
| model_info_button = gr.Button("Get Model Information") | |
| model_info_output = gr.Textbox(value="Waiting...",label="Output", interactive=False) | |
| model_info_button.click(model_info, [model_info_dropdown], [model_info_output]) | |
| with gr.Accordion("Training Time Calculator", open=False): | |
| with gr.Column(): | |
| epochs_input = gr.Number(label="Number of Epochs") | |
| seconds_input = gr.Number(label="Seconds per Epoch") | |
| calculate_button = gr.Button("Calculate Time Remaining") | |
| remaining_time_output = gr.Textbox(label="Remaining Time", interactive=False) | |
| calculate_button.click(calculate_remaining_time,inputs=[epochs_input, seconds_input],outputs=[remaining_time_output]) | |
| with gr.Accordion("Model Fusion", open=False): | |
| with gr.Group(): | |
| def merge(ckpt_a, ckpt_b, alpha_a, sr_, if_f0_, info__, name_to_save0, version_2): | |
| for model in MODELS: | |
| if model["model_name"] == ckpt_a: | |
| ckpt_a = model["model"] | |
| if model["model_name"] == ckpt_b: | |
| ckpt_b = model["model"] | |
| path = model_handler.merge(ckpt_a, ckpt_b, alpha_a, sr_, if_f0_, info__, name_to_save0, version_2) | |
| if path == "Fail to merge the models. The model architectures are not the same.": | |
| return "Fail to merge the models. The model architectures are not the same." | |
| else: | |
| MODELS.append({"model": path, "index": None, "model_name": name_to_save0}) | |
| return "Merged, saved as " + name_to_save0 | |
| gr.Markdown(value="Strongly suggested to use only very clean models.") | |
| with gr.Row(): | |
| def update(): | |
| print(MODELS) | |
| return gr.Dropdown(label="Model A", choices=[model["model_name"] for model in MODELS]), gr.Dropdown(label="Model B", choices=[model["model_name"] for model in MODELS]) | |
| refresh_button_fusion = gr.Button("Refresh Models") | |
| ckpt_a = gr.Dropdown(label="Model A", choices=[model["model_name"] for model in MODELS]) | |
| ckpt_b = gr.Dropdown(label="Model B", choices=[model["model_name"] for model in MODELS]) | |
| refresh_button_fusion.click(update, outputs=[ckpt_a, ckpt_b]) | |
| alpha_a = gr.Slider( | |
| minimum=0, | |
| maximum=1, | |
| label="Weight of the first model over the second", | |
| value=0.5, | |
| interactive=True, | |
| ) | |
| with gr.Group(): | |
| with gr.Row(): | |
| sr_ = gr.Radio( | |
| label="Sample rate of both models", | |
| choices=["32k","40k", "48k"], | |
| value="32k", | |
| interactive=True, | |
| ) | |
| if_f0_ = gr.Radio( | |
| label="Pitch Guidance", | |
| choices=["Yes", "Nah"], | |
| value="Yes", | |
| interactive=True, | |
| ) | |
| info__ = gr.Textbox( | |
| label="Add informations to the model", | |
| value="", | |
| max_lines=8, | |
| interactive=True, | |
| visible=False | |
| ) | |
| name_to_save0 = gr.Textbox( | |
| label="Final Model name", | |
| value="", | |
| max_lines=1, | |
| interactive=True, | |
| ) | |
| version_2 = gr.Radio( | |
| label="Versions of the models", | |
| choices=["v1", "v2"], | |
| value="v2", | |
| interactive=True, | |
| ) | |
| with gr.Group(): | |
| with gr.Row(): | |
| but6 = gr.Button("Fuse the two models", variant="primary") | |
| info4 = gr.Textbox(label="Output", value="", max_lines=8) | |
| but6.click( | |
| merge, | |
| [ckpt_a,ckpt_b,alpha_a,sr_,if_f0_,info__,name_to_save0,version_2,],info4,api_name="ckpt_merge",) | |
| with gr.Accordion("Model Quantization", open=False): | |
| gr.Markdown("Quantize the model to a lower precision. - soon™ or never™ 😎") | |
| with gr.Accordion("Debug", open=False): | |
| def json_to_markdown_table(json_data): | |
| table = "| Key | Value |\n| --- | --- |\n" | |
| for key, value in json_data.items(): | |
| table += f"| {key} | {value} |\n" | |
| return table | |
| gr.Markdown("View the models that are currently loaded in the instance.") | |
| gr.Markdown(json_to_markdown_table({"Models": len(MODELS), "UVR Models": len(UVR_5_MODELS)})) | |
| gr.Markdown("View the current status of the instance.") | |
| status = { | |
| "Status": "Running", # duh lol | |
| "Models": len(MODELS), | |
| "UVR Models": len(UVR_5_MODELS), | |
| "CPU Usage": f"{psutil.cpu_percent()}%", | |
| "RAM Usage": f"{psutil.virtual_memory().percent}%", | |
| "CPU": f"{cpuinfo.get_cpu_info()['brand_raw']}", | |
| "System Uptime": f"{round(time.time() - psutil.boot_time(), 2)} seconds", | |
| "System Load Average": f"{psutil.getloadavg()}", | |
| "====================": "====================", | |
| "CPU Cores": psutil.cpu_count(), | |
| "CPU Threads": psutil.cpu_count(logical=True), | |
| "RAM Total": f"{round(psutil.virtual_memory().total / 1024**3, 2)} GB", | |
| "RAM Used": f"{round(psutil.virtual_memory().used / 1024**3, 2)} GB", | |
| "CPU Frequency": f"{psutil.cpu_freq().current} MHz", | |
| "====================": "====================", | |
| "GPU": "A100 - Do a request (Inference, you won't see it either way)", | |
| } | |
| gr.Markdown(json_to_markdown_table(status)) | |
| with gr.Tab("Credits"): | |
| gr.Markdown( | |
| """ | |
| Ilaria RVC made by [Ilaria](https://huggingface.co/TheStinger) suport her on [ko-fi](https://ko-fi.com/ilariaowo) | |
| The Inference code is made by [r3gm](https://huggingface.co/r3gm) (his module helped form this space 💖) | |
| made with ❤️ by [mikus](https://github.com/cappuch) - made the ui! | |
| ## In loving memory of JLabDX 🕊️ | |
| """ | |
| ) | |
| with gr.Tab(("")): | |
| gr.Markdown(''' | |
|  | |
| ''') | |
| demo.queue(api_open=False).launch(show_api=False) | |