Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | 
         @@ -3,9 +3,7 @@ import os 
     | 
|
| 3 | 
         
             
            import torch
         
     | 
| 4 | 
         
             
            from torch import autocast
         
     | 
| 5 | 
         
             
            from diffusers import StableDiffusionPipeline
         
     | 
| 6 | 
         
            -
            from datasets import load_dataset
         
     | 
| 7 | 
         
             
            from PIL import Image
         
     | 
| 8 | 
         
            -
            import re
         
     | 
| 9 | 
         
             
            from styles import css, header_html, footer_html
         
     | 
| 10 | 
         
             
            from examples import examples
         
     | 
| 11 | 
         
             
            from transformers import pipeline
         
     | 
| 
         @@ -20,10 +18,6 @@ device = "cuda" if torch.cuda.is_available() else "cpu" 
     | 
|
| 20 | 
         
             
            pipe = StableDiffusionPipeline.from_pretrained(
         
     | 
| 21 | 
         
             
                model_id, use_auth_token=True, revision="fp16", torch_dtype=torch.float16)
         
     | 
| 22 | 
         
             
            pipe = pipe.to(device)
         
     | 
| 23 | 
         
            -
            # When running locally, you won`t have access to this, so you can remove this part
         
     | 
| 24 | 
         
            -
            word_list_dataset = load_dataset(
         
     | 
| 25 | 
         
            -
                "stabilityai/word-list", data_files="list.txt", use_auth_token=os.environ.get('auth_token')
         
     | 
| 26 | 
         
            -
            word_list = word_list_dataset["train"]['text']
         
     | 
| 27 | 
         | 
| 28 | 
         | 
| 29 | 
         
             
            def transcribe(audio):
         
     | 
| 
         @@ -32,13 +26,8 @@ def transcribe(audio): 
     | 
|
| 32 | 
         | 
| 33 | 
         | 
| 34 | 
         
             
            def infer(audio, samples, steps, scale, seed):
         
     | 
| 35 | 
         
            -
                prompt = transcribe(audio)
         
     | 
| 36 | 
         
            -
                # When running locally you can also remove this filter
         
     | 
| 37 | 
         
            -
                for filter in word_list:
         
     | 
| 38 | 
         
            -
                    if re.search(rf"\b{filter}\b", prompt):
         
     | 
| 39 | 
         
            -
                        raise gr.Error(
         
     | 
| 40 | 
         
            -
                            "Unsafe content found. Please try again with different prompts.")
         
     | 
| 41 | 
         | 
| 
         | 
|
| 42 | 
         
             
                generator = torch.Generator(device=device).manual_seed(seed)
         
     | 
| 43 | 
         | 
| 44 | 
         
             
                # If you are running locally with CPU, you can remove the `with autocast("cuda")`
         
     | 
| 
         @@ -131,4 +120,4 @@ with block: 
     | 
|
| 131 | 
         
             
                    )
         
     | 
| 132 | 
         
             
                    gr.HTML(footer_html)
         
     | 
| 133 | 
         | 
| 134 | 
         
            -
            block.queue(max_size=25).launch()
         
     | 
| 
         | 
|
| 3 | 
         
             
            import torch
         
     | 
| 4 | 
         
             
            from torch import autocast
         
     | 
| 5 | 
         
             
            from diffusers import StableDiffusionPipeline
         
     | 
| 
         | 
|
| 6 | 
         
             
            from PIL import Image
         
     | 
| 
         | 
|
| 7 | 
         
             
            from styles import css, header_html, footer_html
         
     | 
| 8 | 
         
             
            from examples import examples
         
     | 
| 9 | 
         
             
            from transformers import pipeline
         
     | 
| 
         | 
|
| 18 | 
         
             
            pipe = StableDiffusionPipeline.from_pretrained(
         
     | 
| 19 | 
         
             
                model_id, use_auth_token=True, revision="fp16", torch_dtype=torch.float16)
         
     | 
| 20 | 
         
             
            pipe = pipe.to(device)
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 21 | 
         | 
| 22 | 
         | 
| 23 | 
         
             
            def transcribe(audio):
         
     | 
| 
         | 
|
| 26 | 
         | 
| 27 | 
         | 
| 28 | 
         
             
            def infer(audio, samples, steps, scale, seed):
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 29 | 
         | 
| 30 | 
         
            +
                prompt = transcribe(audio)
         
     | 
| 31 | 
         
             
                generator = torch.Generator(device=device).manual_seed(seed)
         
     | 
| 32 | 
         | 
| 33 | 
         
             
                # If you are running locally with CPU, you can remove the `with autocast("cuda")`
         
     | 
| 
         | 
|
| 120 | 
         
             
                    )
         
     | 
| 121 | 
         
             
                    gr.HTML(footer_html)
         
     | 
| 122 | 
         | 
| 123 | 
         
            +
            block.queue(max_size=25).launch()
         
     |