Spaces:
Runtime error
Runtime error
from diffusers import DDPMPipeline | |
import gradio as gr | |
models = [ | |
{'type': 'pokemon', 'res': 64, 'id': 'mrm8488/ddpm-ema-pokemon-64'}, | |
{'type': 'flowers', 'res': 64, 'id': 'mrm8488/ddpm-ema-flower-64'}, | |
{'type': 'anime_faces', 'res': 128, 'id': 'mrm8488/mrm8488/ddpm-ema-anime-256'}, | |
{'type': 'butterflies', 'res': 128, 'id': 'mrm8488/ddpm-ema-butterflies-128'}, | |
{'type': 'human_faces', 'res': 256, 'id': 'fusing/ddpm-celeba-hq'} | |
] | |
for model in models: | |
pipeline = DDPMPipeline.from_pretrained(model['id']) | |
pipeline.save_pretrained(model['id']) | |
def predict(type): | |
model_id = None | |
for model in models: | |
if model['type'] == type: | |
model_id = model['id'] | |
break | |
# load model and scheduler | |
pipeline = DDPMPipeline.from_pretrained(model_id) | |
# run pipeline in inference | |
image = pipeline()["sample"] | |
return image[0] | |
gr.Interface( | |
predict, | |
inputs=[gr.components.Dropdown(choices = [model['type'] for model in models], label='Models') | |
], | |
outputs=["image"] | |
).launch() |