Spaces:
Sleeping
Sleeping
mriusero
commited on
Commit
·
626c449
1
Parent(s):
5423593
feat: real-time
Browse files- app.py +1 -1
- src/production/flow.py +3 -3
- src/production/metrics/machine.py +2 -4
- src/production/metrics/tools.py +8 -7
- src/ui/dashboard.py +42 -33
- src/ui/graphs/tools_graphs.py +13 -5
app.py
CHANGED
|
@@ -15,7 +15,7 @@ STATE = {
|
|
| 15 |
"current_time": None,
|
| 16 |
"part_id": None,
|
| 17 |
"data": {},
|
| 18 |
-
"
|
| 19 |
}
|
| 20 |
|
| 21 |
with gr.Blocks(theme=custom_theme) as demo:
|
|
|
|
| 15 |
"current_time": None,
|
| 16 |
"part_id": None,
|
| 17 |
"data": {},
|
| 18 |
+
"efficiency": {},
|
| 19 |
}
|
| 20 |
|
| 21 |
with gr.Blocks(theme=custom_theme) as demo:
|
src/production/flow.py
CHANGED
|
@@ -1,12 +1,12 @@
|
|
| 1 |
-
import time
|
| 2 |
import random
|
| 3 |
import numpy as np
|
| 4 |
import pandas as pd
|
|
|
|
| 5 |
from datetime import datetime, timedelta
|
| 6 |
|
| 7 |
from .downtime import machine_errors
|
| 8 |
|
| 9 |
-
def generate_data(state):
|
| 10 |
"""
|
| 11 |
Generate synthetic production data for a manufacturing process.
|
| 12 |
"""
|
|
@@ -83,7 +83,7 @@ def generate_data(state):
|
|
| 83 |
|
| 84 |
print(f" - part {part_id} data generated")
|
| 85 |
part_id += 1
|
| 86 |
-
|
| 87 |
|
| 88 |
current_time += timedelta(seconds=1)
|
| 89 |
|
|
|
|
|
|
|
| 1 |
import random
|
| 2 |
import numpy as np
|
| 3 |
import pandas as pd
|
| 4 |
+
import asyncio
|
| 5 |
from datetime import datetime, timedelta
|
| 6 |
|
| 7 |
from .downtime import machine_errors
|
| 8 |
|
| 9 |
+
async def generate_data(state):
|
| 10 |
"""
|
| 11 |
Generate synthetic production data for a manufacturing process.
|
| 12 |
"""
|
|
|
|
| 83 |
|
| 84 |
print(f" - part {part_id} data generated")
|
| 85 |
part_id += 1
|
| 86 |
+
await asyncio.sleep(0.5)
|
| 87 |
|
| 88 |
current_time += timedelta(seconds=1)
|
| 89 |
|
src/production/metrics/machine.py
CHANGED
|
@@ -1,8 +1,6 @@
|
|
| 1 |
import pandas as pd
|
| 2 |
-
import json
|
| 3 |
-
import os
|
| 4 |
|
| 5 |
-
def machine_metrics(raw_data):
|
| 6 |
"""
|
| 7 |
Calculate machine efficiency metrics from raw production data.
|
| 8 |
:param raw_data: collection of raw production data containing timestamps, downtime, and compliance information.
|
|
@@ -64,7 +62,7 @@ def machine_metrics(raw_data):
|
|
| 64 |
"MTTR": str(mttr)
|
| 65 |
}
|
| 66 |
|
| 67 |
-
def fetch_issues(raw_data):
|
| 68 |
df = pd.DataFrame(raw_data)
|
| 69 |
issues = df[df["Event"] == "Machine Error"]
|
| 70 |
return issues[["Timestamp", "Event", "Error Code", "Error Description", "Downtime Start", "Downtime End"]]
|
|
|
|
| 1 |
import pandas as pd
|
|
|
|
|
|
|
| 2 |
|
| 3 |
+
async def machine_metrics(raw_data):
|
| 4 |
"""
|
| 5 |
Calculate machine efficiency metrics from raw production data.
|
| 6 |
:param raw_data: collection of raw production data containing timestamps, downtime, and compliance information.
|
|
|
|
| 62 |
"MTTR": str(mttr)
|
| 63 |
}
|
| 64 |
|
| 65 |
+
async def fetch_issues(raw_data):
|
| 66 |
df = pd.DataFrame(raw_data)
|
| 67 |
issues = df[df["Event"] == "Machine Error"]
|
| 68 |
return issues[["Timestamp", "Event", "Error Code", "Error Description", "Downtime Start", "Downtime End"]]
|
src/production/metrics/tools.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
import numpy as np
|
| 2 |
-
|
| 3 |
|
| 4 |
def stats_metrics(data, column, usl, lsl):
|
| 5 |
"""
|
|
@@ -21,7 +21,7 @@ def stats_metrics(data, column, usl, lsl):
|
|
| 21 |
return rolling_mean, rolling_std, cp, cpk
|
| 22 |
|
| 23 |
|
| 24 |
-
def process_unique_tool(tool, raw_data):
|
| 25 |
"""
|
| 26 |
Process data for a single tool and save the results to a CSV file.
|
| 27 |
Args:
|
|
@@ -35,17 +35,18 @@ def process_unique_tool(tool, raw_data):
|
|
| 35 |
return tool, tool_data
|
| 36 |
|
| 37 |
|
| 38 |
-
def tools_metrics(raw_data):
|
| 39 |
"""
|
| 40 |
Process the raw production data to extract tool metrics in parallel.
|
| 41 |
"""
|
| 42 |
metrics = {}
|
| 43 |
tools = raw_data['Tool ID'].unique()
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
|
|
|
| 49 |
|
| 50 |
# Calculate metrics for all tools together
|
| 51 |
all_tools_data = raw_data.copy()
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
+
import asyncio
|
| 3 |
|
| 4 |
def stats_metrics(data, column, usl, lsl):
|
| 5 |
"""
|
|
|
|
| 21 |
return rolling_mean, rolling_std, cp, cpk
|
| 22 |
|
| 23 |
|
| 24 |
+
async def process_unique_tool(tool, raw_data):
|
| 25 |
"""
|
| 26 |
Process data for a single tool and save the results to a CSV file.
|
| 27 |
Args:
|
|
|
|
| 35 |
return tool, tool_data
|
| 36 |
|
| 37 |
|
| 38 |
+
async def tools_metrics(raw_data):
|
| 39 |
"""
|
| 40 |
Process the raw production data to extract tool metrics in parallel.
|
| 41 |
"""
|
| 42 |
metrics = {}
|
| 43 |
tools = raw_data['Tool ID'].unique()
|
| 44 |
|
| 45 |
+
tasks = [process_unique_tool(tool, raw_data) for tool in tools]
|
| 46 |
+
results = await asyncio.gather(*tasks)
|
| 47 |
+
|
| 48 |
+
for tool, tool_data in results:
|
| 49 |
+
metrics[f"tool_{tool}"] = tool_data
|
| 50 |
|
| 51 |
# Calculate metrics for all tools together
|
| 52 |
all_tools_data = raw_data.copy()
|
src/ui/dashboard.py
CHANGED
|
@@ -1,54 +1,63 @@
|
|
| 1 |
-
import time
|
| 2 |
-
import json
|
| 3 |
import gradio as gr
|
| 4 |
import pandas as pd
|
|
|
|
| 5 |
|
| 6 |
from src.production.flow import generate_data
|
| 7 |
from src.production.metrics.tools import tools_metrics
|
| 8 |
from src.production.metrics.machine import machine_metrics, fetch_issues
|
| 9 |
-
|
| 10 |
from src.ui.graphs.tools_graphs import ToolMetricsDisplay
|
| 11 |
|
| 12 |
-
def
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
|
|
|
|
| 15 |
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
issues = fetch_issues(raw_data)
|
| 42 |
-
state['data']['issues'] = issues
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
return
|
| 47 |
|
| 48 |
-
plots = display1.tool_block(df=pd.DataFrame(), id=1)
|
| 49 |
timer = gr.Timer(1)
|
| 50 |
timer.tick(
|
| 51 |
-
fn=
|
| 52 |
-
inputs=state,
|
| 53 |
-
outputs=plots
|
| 54 |
)
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
+
import asyncio
|
| 4 |
|
| 5 |
from src.production.flow import generate_data
|
| 6 |
from src.production.metrics.tools import tools_metrics
|
| 7 |
from src.production.metrics.machine import machine_metrics, fetch_issues
|
|
|
|
| 8 |
from src.ui.graphs.tools_graphs import ToolMetricsDisplay
|
| 9 |
|
| 10 |
+
async def dataflow(state):
|
| 11 |
+
if 'tools' not in state['data']:
|
| 12 |
+
state['data']['tools'] = {}
|
| 13 |
|
| 14 |
+
if 'issues' not in state['data']:
|
| 15 |
+
state['data']['issues'] = {}
|
| 16 |
|
| 17 |
+
if state['running']:
|
| 18 |
+
if 'gen_task' not in state or state['gen_task'] is None or state['gen_task'].done():
|
| 19 |
+
print("Launching generate_data in background")
|
| 20 |
+
state['gen_task'] = asyncio.create_task(generate_data(state))
|
| 21 |
|
| 22 |
+
raw_data = state['data'].get('raw_df', pd.DataFrame())
|
| 23 |
+
if raw_data.empty:
|
| 24 |
+
return pd.DataFrame()
|
| 25 |
|
| 26 |
+
tools_data = await tools_metrics(raw_data)
|
| 27 |
+
tools_data = {tool: df for tool, df in tools_data.items() if not df.empty}
|
| 28 |
+
for tool, df in tools_data.items():
|
| 29 |
+
state['data']['tools'][tool] = df
|
| 30 |
|
| 31 |
+
machine_data = await machine_metrics(raw_data)
|
| 32 |
+
state['efficiency'] = machine_data
|
| 33 |
+
issues = await fetch_issues(raw_data)
|
| 34 |
+
state['data']['issues'] = issues
|
| 35 |
|
| 36 |
+
df1 = pd.DataFrame(state['data']['tools'].get('tool_1', pd.DataFrame()))
|
| 37 |
+
return df1
|
| 38 |
+
|
| 39 |
+
def dashboard_ui(state):
|
| 40 |
+
display = ToolMetricsDisplay()
|
| 41 |
+
plots = display.tool_block(df=pd.DataFrame(), id=1)
|
| 42 |
|
| 43 |
+
async def on_tick(state):
|
| 44 |
+
df1 = await dataflow(state)
|
| 45 |
+
updated = [
|
| 46 |
+
display.normal_curve(df1, cote='pos'),
|
| 47 |
+
display.gauge(df1, type='cp', cote='pos'),
|
| 48 |
+
display.gauge(df1, type='cpk', cote='pos'),
|
| 49 |
|
| 50 |
+
display.normal_curve(df1, cote='ori'),
|
| 51 |
+
display.gauge(df1, type='cp', cote='ori'),
|
| 52 |
+
display.gauge(df1, type='cpk', cote='ori'),
|
|
|
|
|
|
|
| 53 |
|
| 54 |
+
display.control_graph(df1),
|
| 55 |
+
]
|
| 56 |
+
return updated + [state]
|
| 57 |
|
|
|
|
| 58 |
timer = gr.Timer(1)
|
| 59 |
timer.tick(
|
| 60 |
+
fn=on_tick,
|
| 61 |
+
inputs=[state],
|
| 62 |
+
outputs=plots + [state]
|
| 63 |
)
|
src/ui/graphs/tools_graphs.py
CHANGED
|
@@ -1,6 +1,5 @@
|
|
| 1 |
import numpy as np
|
| 2 |
from scipy.stats import norm
|
| 3 |
-
import pandas as pd
|
| 4 |
import plotly.graph_objects as go
|
| 5 |
import gradio as gr
|
| 6 |
|
|
@@ -10,6 +9,7 @@ class ToolMetricsDisplay:
|
|
| 10 |
self.df = None
|
| 11 |
self.pos_color = '#2CFCFF'
|
| 12 |
self.ori_color = '#ff8508'
|
|
|
|
| 13 |
|
| 14 |
@staticmethod
|
| 15 |
def gauge(df, type=None, cote=None):
|
|
@@ -120,8 +120,12 @@ class ToolMetricsDisplay:
|
|
| 120 |
|
| 121 |
if cote == 'pos':
|
| 122 |
color = self.pos_color
|
|
|
|
|
|
|
| 123 |
else:
|
| 124 |
color = self.ori_color
|
|
|
|
|
|
|
| 125 |
mu_column = f"{cote}_rolling_mean"
|
| 126 |
std_column = f"{cote}_rolling_std"
|
| 127 |
idx = df['Timestamp'].idxmax()
|
|
@@ -130,9 +134,9 @@ class ToolMetricsDisplay:
|
|
| 130 |
y = norm.pdf(x, mu, std)
|
| 131 |
fig = go.Figure()
|
| 132 |
fig.add_trace(go.Scatter(x=x, y=y, mode='lines', name='Normal Curve', line=dict(color=color)))
|
| 133 |
-
fig.add_shape(type="line", x0=
|
| 134 |
name='usl')
|
| 135 |
-
fig.add_shape(type="line", x0=
|
| 136 |
name='lsl')
|
| 137 |
fig.update_layout(
|
| 138 |
template='plotly_dark',
|
|
@@ -175,5 +179,9 @@ class ToolMetricsDisplay:
|
|
| 175 |
with gr.Row(height=400):
|
| 176 |
control_plot = gr.Plot(self.control_graph(df=df))
|
| 177 |
|
| 178 |
-
|
| 179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
from scipy.stats import norm
|
|
|
|
| 3 |
import plotly.graph_objects as go
|
| 4 |
import gradio as gr
|
| 5 |
|
|
|
|
| 9 |
self.df = None
|
| 10 |
self.pos_color = '#2CFCFF'
|
| 11 |
self.ori_color = '#ff8508'
|
| 12 |
+
self.plots = []
|
| 13 |
|
| 14 |
@staticmethod
|
| 15 |
def gauge(df, type=None, cote=None):
|
|
|
|
| 120 |
|
| 121 |
if cote == 'pos':
|
| 122 |
color = self.pos_color
|
| 123 |
+
lsl = 0.3
|
| 124 |
+
usl = 0.5
|
| 125 |
else:
|
| 126 |
color = self.ori_color
|
| 127 |
+
lsl = 0.2
|
| 128 |
+
usl = 0.6
|
| 129 |
mu_column = f"{cote}_rolling_mean"
|
| 130 |
std_column = f"{cote}_rolling_std"
|
| 131 |
idx = df['Timestamp'].idxmax()
|
|
|
|
| 134 |
y = norm.pdf(x, mu, std)
|
| 135 |
fig = go.Figure()
|
| 136 |
fig.add_trace(go.Scatter(x=x, y=y, mode='lines', name='Normal Curve', line=dict(color=color)))
|
| 137 |
+
fig.add_shape(type="line", x0=usl, y0=0, x1=usl, y1=max(y), line=dict(color="red", width=1, dash="dot"),
|
| 138 |
name='usl')
|
| 139 |
+
fig.add_shape(type="line", x0=lsl, y0=0, x1=lsl, y1=max(y), line=dict(color="red", width=1, dash="dot"),
|
| 140 |
name='lsl')
|
| 141 |
fig.update_layout(
|
| 142 |
template='plotly_dark',
|
|
|
|
| 179 |
with gr.Row(height=400):
|
| 180 |
control_plot = gr.Plot(self.control_graph(df=df))
|
| 181 |
|
| 182 |
+
self.plots = [
|
| 183 |
+
pos_normal_plot, pos_cp_gauge, pos_cpk_gauge,
|
| 184 |
+
ori_normal_plot, ori_cp_gauge, ori_cpk_gauge,
|
| 185 |
+
control_plot
|
| 186 |
+
]
|
| 187 |
+
return self.plots
|