phylo-diffusion / ldm /plotting_utils.py
mridulk's picture
added few ldm files
642d5e2
#based on https://github.com/CompVis/taming-transformers
import matplotlib.pyplot as plt
import seaborn as sns
import os
from pathlib import Path
import torchvision
import torch
import numpy as np
from PIL import Image
import json
import csv
import pandas as pd
from sklearn.metrics import ConfusionMatrixDisplay
def dump_to_json(dict, ckpt_path, name='results', get_fig_path=True):
if get_fig_path:
root = get_fig_pth(ckpt_path)
else:
root = ckpt_path
if not os.path.exists(root):
os.mkdir(root)
with open(os.path.join(root, name+".json"), "w") as outfile:
json.dump(dict, outfile)
def save_to_cvs(ckpt_path, postfix, file_name, list_of_created_sequence):
if ckpt_path is not None:
root = get_fig_pth(ckpt_path, postfix=postfix)
else:
root = postfix
file = open(os.path.join(root, file_name), 'w')
with file:
write = csv.writer(file)
write.writerows(list_of_created_sequence)
def save_to_txt(arr, ckpt_path, name='results'):
root = get_fig_pth(ckpt_path)
with open(os.path.join(root, name+".txt"), "w") as outfile:
outfile.write(str(arr))
def save_image_grid(torch_images, ckpt_path=None, subfolder=None, postfix="", nrow=10):
if ckpt_path is not None:
root = get_fig_pth(ckpt_path, postfix=subfolder)
else:
root = subfolder
grid = torchvision.utils.make_grid(torch_images, nrow=nrow)
grid = torch.clamp(grid, -1., 1.)
grid = (grid+1.0)/2.0 # -1,1 -> 0,1; c,h,w
grid = grid.transpose(0,1).transpose(1,2).squeeze(-1)
grid = grid.cpu().numpy()
grid = (grid*255).astype(np.uint8)
filename = "code_changes_"+postfix+".png"
path = os.path.join(root, filename)
os.makedirs(os.path.split(path)[0], exist_ok=True)
Image.fromarray(grid).save(path, bbox_inches='tight')
def unprocess_image(torch_image):
torch_image = torch.clamp(torch_image, -1., 1.)
torch_image = (torch_image+1.0)/2.0 # -1,1 -> 0,1; c,h,w
torch_image = torch_image.transpose(0,1).transpose(1,2).squeeze(-1)
torch_image = torch_image.cpu().numpy()
torch_image = (torch_image*255).astype(np.uint8)
return torch_image
def save_image(torch_image, image_name, ckpt_path=None, subfolder=None):
if ckpt_path is not None:
root = get_fig_pth(ckpt_path, postfix=subfolder)
else:
root = subfolder
torch_image = unprocess_image(torch_image)
filename = image_name+".png"
path = os.path.join(root, filename)
os.makedirs(os.path.split(path)[0], exist_ok=True)
fig = plt.figure()
plt.imshow(torch_image[0].squeeze())
fig.savefig(path,bbox_inches='tight',dpi=300)
def get_fig_pth(ckpt_path, postfix=None):
figs_postfix = 'figs'
postfix = os.path.join(figs_postfix, postfix) if postfix is not None else figs_postfix
parent_path = Path(ckpt_path).parent.parent.absolute()
fig_path = Path(os.path.join(parent_path, postfix))
os.makedirs(fig_path, exist_ok=True)
return fig_path
def plot_heatmap(heatmap, ckpt_path=None, title='default', postfix=None):
if ckpt_path is not None:
path = get_fig_pth(ckpt_path, postfix=postfix)
else:
path = postfix
# show
fig = plt.figure()
ax = plt.imshow(heatmap, cmap='hot', interpolation='nearest')
plt.tick_params(left=False, bottom=False)
# cbar = ax.collections[0].colorbar
cbar = plt.colorbar(ax)
cbar.ax.tick_params(labelsize=15)
plt.axis('off')
plt.show()
fig.savefig(os.path.join(path, title+ " heat_map.png"),bbox_inches='tight',dpi=300)
pd.DataFrame(heatmap.numpy()).to_csv(os.path.join(path, title+ " heat_map.csv"))
def plot_heatmap_at_path(heatmap, save_path, ckpt_path=None, title='default', postfix=None):
if ckpt_path is not None:
path = get_fig_pth(ckpt_path, postfix=postfix)
else:
path = postfix
# show
fig = plt.figure()
ax = plt.imshow(heatmap, cmap='hot', interpolation='nearest')
plt.tick_params(left=False, bottom=False)
# cbar = ax.collections[0].colorbar
cbar = plt.colorbar(ax)
cbar.ax.tick_params(labelsize=15)
plt.axis('off')
plt.show()
fig.savefig(os.path.join(save_path, title+ "_heat_map.png"),bbox_inches='tight',dpi=300)
pd.DataFrame(heatmap.numpy()).to_csv(os.path.join(save_path, title+ "_heat_map.csv"))
def plot_confusionmatrix(preds, classes, classnames, ckpt_path, postfix=None, title="", get_fig_path=True):
fig, ax = plt.subplots(figsize=(30,30))
preds_max = np.argmax(preds.cpu().numpy(), axis=-1)
disp = ConfusionMatrixDisplay.from_predictions(classes.cpu().numpy(), preds_max, display_labels=classnames, normalize='true', xticks_rotation='vertical', ax=ax)
disp.plot()
if get_fig_path:
fig_path = get_fig_pth(ckpt_path, postfix=postfix)
else:
fig_path = ckpt_path
if not os.path.exists(fig_path):
os.mkdir(fig_path)
print(fig_path)
fig.savefig(os.path.join(fig_path, title+ " heat_map.png"))
def plot_confusionmatrix_colormap(preds, classes, classnames, ckpt_path, postfix=None, title="", get_fig_path=True):
fig, ax = plt.subplots(figsize=(30,30))
preds_max = np.argmax(preds.cpu().numpy(), axis=-1)
class_labels = list(range(len(classnames)))
disp = ConfusionMatrixDisplay.from_predictions(classes.cpu().numpy(), preds_max, display_labels=class_labels, normalize='true', xticks_rotation='vertical', ax=ax, cmap='coolwarm')
disp.plot()
if get_fig_path:
fig_path = get_fig_pth(ckpt_path, postfix=postfix)
else:
fig_path = ckpt_path
if not os.path.exists(fig_path):
os.mkdir(fig_path)
print(fig_path)
fig.savefig(os.path.join(fig_path, title+ " heat_map_coolwarm.png"))
class Histogram_plotter:
def __init__(self, codes_per_phylolevel, n_phylolevels, n_embed,
converter,
indx_to_label,
ckpt_path, directory):
self.codes_per_phylolevel = codes_per_phylolevel
self.n_phylolevels = n_phylolevels
self.n_embed = n_embed
self.converter = converter
self.ckpt_path = ckpt_path
self.directory = directory
self.indx_to_label = indx_to_label
def plot_histograms(self, histograms, species_indx, is_nonattribute=False, prefix="species"):
fig, axs = plt.subplots(self.codes_per_phylolevel, self.n_phylolevels, figsize = (5*self.n_phylolevels,30))
for i, ax in enumerate(axs.reshape(-1)):
ax.hist(histograms[i], density=True, range=(0, self.n_embed-1), bins=self.n_embed)
if not is_nonattribute:
code_location, level = self.converter.get_code_reshaped_index(i)
ax.set_title("code "+ str(code_location) + "/level " +str(level))
else:
ax.set_title("code "+ str(i))
plt.show()
sub_dir = 'attribute' if not is_nonattribute else 'non_attribute'
fig.savefig(os.path.join(get_fig_pth(self.ckpt_path, postfix=self.directory+'/'+sub_dir), "{}_{}_{}_hostogram.png".format(prefix, species_indx, self.indx_to_label[species_indx])),bbox_inches='tight',dpi=300)
plt.close(fig)