Spaces:
Sleeping
Sleeping
#based on https://github.com/CompVis/taming-transformers | |
import pickle | |
from torch.utils.data import Dataset | |
from ldm.data.base import ImagePaths | |
import ldm.data.constants as CONSTANTS | |
class CustomBase(Dataset): | |
def __init__(self, *args, **kwargs): | |
super().__init__() | |
self.data = None | |
def __len__(self): | |
return len(self.data) | |
def __getitem__(self, i): | |
example = self.data[i] | |
return example | |
class CustomTrain(CustomBase): | |
def __init__(self, size, training_images_list_file, horizontalflip=False, random_contrast=False, shiftrotate=False, add_labels=False, unique_skipped_labels=[], class_to_node=None): | |
super().__init__() | |
with open(training_images_list_file, "r") as f: | |
paths = sorted(f.read().splitlines()) | |
labels=None | |
if add_labels: | |
labels_per_file = list(map(lambda path: path.split('/')[-2], paths)) | |
labels_set = sorted(list(set(labels_per_file))) | |
self.labels_to_idx = {label_name: i for i, label_name in enumerate(labels_set)} | |
if class_to_node: | |
with open(class_to_node, 'rb') as pickle_file: | |
class_to_node_dict = pickle.load(pickle_file) | |
labels = { | |
CONSTANTS.DISENTANGLER_CLASS_OUTPUT: [self.labels_to_idx[label_name] for label_name in labels_per_file], | |
CONSTANTS.DATASET_CLASSNAME: labels_per_file, | |
'class_to_node': [class_to_node_dict[label_name] for label_name in labels_per_file] | |
} | |
# labels = [self.labels_to_idx[label_name] for label_name in labels_per_file] | |
else: | |
labels = { | |
CONSTANTS.DISENTANGLER_CLASS_OUTPUT: [self.labels_to_idx[label_name] for label_name in labels_per_file], | |
CONSTANTS.DATASET_CLASSNAME: labels_per_file | |
} | |
self.indx_to_label = {v: k for k, v in self.labels_to_idx.items()} | |
self.data = ImagePaths(paths=paths, size=size, random_crop=False, horizontalflip=horizontalflip, | |
random_contrast=random_contrast, shiftrotate=shiftrotate, labels=labels, | |
unique_skipped_labels=unique_skipped_labels) | |
class CustomTest(CustomTrain): | |
def __init__(self, size, test_images_list_file, add_labels=False, unique_skipped_labels=[], class_to_node=None): | |
super().__init__(size, test_images_list_file, add_labels=add_labels, | |
unique_skipped_labels=unique_skipped_labels, class_to_node=class_to_node) | |