mrfakename's picture
Super-squash branch 'main' using huggingface_hub
0102e16 verified
import logging
import os
import shutil
from multiprocessing import Pool
import kaldiio
import numpy as np
import librosa
import torch.distributed as dist
import torchaudio
def filter_wav_text(data_dir, dataset):
wav_file = os.path.join(data_dir, dataset, "wav.scp")
text_file = os.path.join(data_dir, dataset, "text")
with open(wav_file) as f_wav, open(text_file) as f_text:
wav_lines = f_wav.readlines()
text_lines = f_text.readlines()
os.rename(wav_file, "{}.bak".format(wav_file))
os.rename(text_file, "{}.bak".format(text_file))
wav_dict = {}
for line in wav_lines:
parts = line.strip().split()
if len(parts) < 2:
continue
wav_dict[parts[0]] = parts[1]
text_dict = {}
for line in text_lines:
parts = line.strip().split()
if len(parts) < 2:
continue
text_dict[parts[0]] = " ".join(parts[1:])
filter_count = 0
with open(wav_file, "w") as f_wav, open(text_file, "w") as f_text:
for sample_name, wav_path in wav_dict.items():
if sample_name in text_dict.keys():
f_wav.write(sample_name + " " + wav_path + "\n")
f_text.write(sample_name + " " + text_dict[sample_name] + "\n")
else:
filter_count += 1
logging.info(
"{}/{} samples in {} are filtered because of the mismatch between wav.scp and text".format(
filter_count, len(wav_lines), dataset
)
)
def wav2num_frame(wav_path, frontend_conf):
try:
waveform, sampling_rate = torchaudio.load(wav_path)
except:
waveform, sampling_rate = librosa.load(wav_path)
waveform = np.expand_dims(waveform, axis=0)
n_frames = (waveform.shape[1] * 1000.0) / (
sampling_rate * frontend_conf["frame_shift"] * frontend_conf["lfr_n"]
)
feature_dim = frontend_conf["n_mels"] * frontend_conf["lfr_m"]
return n_frames, feature_dim
def calc_shape_core(root_path, args, idx):
file_name = args.data_file_names.split(",")[0]
data_name = args.dataset_conf.get("data_names", "speech,text").split(",")[0]
scp_file = os.path.join(root_path, "{}.{}".format(file_name, idx))
shape_file = os.path.join(root_path, "{}_shape.{}".format(data_name, idx))
with open(scp_file) as f:
lines = f.readlines()
data_type = args.dataset_conf.get("data_types", "sound,text").split(",")[0]
if data_type == "sound":
frontend_conf = args.frontend_conf
dataset_conf = args.dataset_conf
length_min = (
dataset_conf.speech_length_min
if hasattr(dataset_conf, "{}_length_min".format(data_name))
else -1
)
length_max = (
dataset_conf.speech_length_max
if hasattr(dataset_conf, "{}_length_max".format(data_name))
else -1
)
with open(shape_file, "w") as f:
for line in lines:
sample_name, wav_path = line.strip().split()
n_frames, feature_dim = wav2num_frame(wav_path, frontend_conf)
write_flag = True
if n_frames > 0 and length_min > 0:
write_flag = n_frames >= length_min
if n_frames > 0 and length_max > 0:
write_flag = n_frames <= length_max
if write_flag:
f.write(
"{} {},{}\n".format(
sample_name,
str(int(np.ceil(n_frames))),
str(int(feature_dim)),
)
)
f.flush()
elif data_type == "kaldi_ark":
dataset_conf = args.dataset_conf
length_min = (
dataset_conf.speech_length_min
if hasattr(dataset_conf, "{}_length_min".format(data_name))
else -1
)
length_max = (
dataset_conf.speech_length_max
if hasattr(dataset_conf, "{}_length_max".format(data_name))
else -1
)
with open(shape_file, "w") as f:
for line in lines:
sample_name, feature_path = line.strip().split()
feature = kaldiio.load_mat(feature_path)
n_frames, feature_dim = feature.shape
write_flag = True
if n_frames > 0 and length_min > 0:
write_flag = n_frames >= length_min
if n_frames > 0 and length_max > 0:
write_flag = n_frames <= length_max
if write_flag:
f.write(
"{} {},{}\n".format(
sample_name,
str(int(np.ceil(n_frames))),
str(int(feature_dim)),
)
)
f.flush()
elif data_type == "text":
with open(shape_file, "w") as f:
for line in lines:
sample_name, text = line.strip().split(maxsplit=1)
n_tokens = len(text.split())
f.write("{} {}\n".format(sample_name, str(int(np.ceil(n_tokens)))))
f.flush()
else:
raise RuntimeError("Unsupported data_type: {}".format(data_type))
def calc_shape(args, dataset, nj=64):
data_name = args.dataset_conf.get("data_names", "speech,text").split(",")[0]
shape_path = os.path.join(args.data_dir, dataset, "{}_shape".format(data_name))
if os.path.exists(shape_path):
logging.info("Shape file for small dataset already exists.")
return
split_shape_path = os.path.join(
args.data_dir, dataset, "{}_shape_files".format(data_name)
)
if os.path.exists(split_shape_path):
shutil.rmtree(split_shape_path)
os.mkdir(split_shape_path)
# split
file_name = args.data_file_names.split(",")[0]
scp_file = os.path.join(args.data_dir, dataset, file_name)
with open(scp_file) as f:
lines = f.readlines()
num_lines = len(lines)
num_job_lines = num_lines // nj
start = 0
for i in range(nj):
end = start + num_job_lines
file = os.path.join(split_shape_path, "{}.{}".format(file_name, str(i + 1)))
with open(file, "w") as f:
if i == nj - 1:
f.writelines(lines[start:])
else:
f.writelines(lines[start:end])
start = end
p = Pool(nj)
for i in range(nj):
p.apply_async(calc_shape_core, args=(split_shape_path, args, str(i + 1)))
logging.info("Generating shape files, please wait a few minutes...")
p.close()
p.join()
# combine
with open(shape_path, "w") as f:
for i in range(nj):
job_file = os.path.join(
split_shape_path, "{}_shape.{}".format(data_name, str(i + 1))
)
with open(job_file) as job_f:
lines = job_f.readlines()
f.writelines(lines)
logging.info("Generating shape files done.")
def generate_data_list(args, data_dir, dataset, nj=64):
data_names = args.dataset_conf.get("data_names", "speech,text").split(",")
file_names = args.data_file_names.split(",")
concat_data_name = "_".join(data_names)
list_file = os.path.join(data_dir, dataset, "{}_data.list".format(concat_data_name))
if os.path.exists(list_file):
logging.info("Data list for large dataset already exists.")
return
split_path = os.path.join(data_dir, dataset, "split")
if os.path.exists(split_path):
shutil.rmtree(split_path)
os.mkdir(split_path)
data_lines_list = []
for file_name in file_names:
with open(os.path.join(data_dir, dataset, file_name)) as f:
lines = f.readlines()
data_lines_list.append(lines)
num_lines = len(data_lines_list[0])
num_job_lines = num_lines // nj
start = 0
for i in range(nj):
end = start + num_job_lines
split_path_nj = os.path.join(split_path, str(i + 1))
os.mkdir(split_path_nj)
for file_id, file_name in enumerate(file_names):
file = os.path.join(split_path_nj, file_name)
with open(file, "w") as f:
if i == nj - 1:
f.writelines(data_lines_list[file_id][start:])
else:
f.writelines(data_lines_list[file_id][start:end])
start = end
with open(list_file, "w") as f_data:
for i in range(nj):
path = ""
for file_name in file_names:
path = path + " " + os.path.join(split_path, str(i + 1), file_name)
f_data.write(path + "\n")
def prepare_data(args, distributed_option):
data_names = args.dataset_conf.get("data_names", "speech,text").split(",")
data_types = args.dataset_conf.get("data_types", "sound,text").split(",")
file_names = args.data_file_names.split(",")
batch_type = args.dataset_conf["batch_conf"]["batch_type"]
print(
"data_names: {}, data_types: {}, file_names: {}".format(
data_names, data_types, file_names
)
)
assert len(data_names) == len(data_types) == len(file_names)
if args.dataset_type == "small":
args.train_shape_file = [
os.path.join(
args.data_dir, args.train_set, "{}_shape".format(data_names[0])
)
]
args.valid_shape_file = [
os.path.join(
args.data_dir, args.valid_set, "{}_shape".format(data_names[0])
)
]
(
args.train_data_path_and_name_and_type,
args.valid_data_path_and_name_and_type,
) = ([], [])
for file_name, data_name, data_type in zip(file_names, data_names, data_types):
args.train_data_path_and_name_and_type.append(
[
"{}/{}/{}".format(args.data_dir, args.train_set, file_name),
data_name,
data_type,
]
)
args.valid_data_path_and_name_and_type.append(
[
"{}/{}/{}".format(args.data_dir, args.valid_set, file_name),
data_name,
data_type,
]
)
if os.path.exists(args.train_shape_file[0]):
assert os.path.exists(args.valid_shape_file[0])
print("shape file for small dataset already exists.")
return
else:
concat_data_name = "_".join(data_names)
args.train_data_file = os.path.join(
args.data_dir, args.train_set, "{}_data.list".format(concat_data_name)
)
args.valid_data_file = os.path.join(
args.data_dir, args.valid_set, "{}_data.list".format(concat_data_name)
)
if os.path.exists(args.train_data_file):
assert os.path.exists(args.valid_data_file)
print("data list for large dataset already exists.")
return
distributed = distributed_option.distributed
if not distributed or distributed_option.dist_rank == 0:
if hasattr(args, "filter_input") and args.filter_input:
filter_wav_text(args.data_dir, args.train_set)
filter_wav_text(args.data_dir, args.valid_set)
if args.dataset_type == "small" and batch_type != "unsorted":
calc_shape(args, args.train_set)
calc_shape(args, args.valid_set)
if args.dataset_type == "large":
generate_data_list(args, args.data_dir, args.train_set)
generate_data_list(args, args.data_dir, args.valid_set)
if distributed:
dist.barrier()