Spaces:
Runtime error
Runtime error
"""Warm up learning rate scheduler module.""" | |
from typing import Union | |
import torch | |
from torch.optim.lr_scheduler import _LRScheduler | |
from funasr_detach.schedulers.abs_scheduler import AbsBatchStepScheduler | |
class WarmupLR(_LRScheduler, AbsBatchStepScheduler): | |
"""The WarmupLR scheduler | |
This scheduler is almost same as NoamLR Scheduler except for following difference: | |
NoamLR: | |
lr = optimizer.lr * model_size ** -0.5 | |
* min(step ** -0.5, step * warmup_step ** -1.5) | |
WarmupLR: | |
lr = optimizer.lr * warmup_step ** 0.5 | |
* min(step ** -0.5, step * warmup_step ** -1.5) | |
Note that the maximum lr equals to optimizer.lr in this scheduler. | |
""" | |
def __init__( | |
self, | |
optimizer: torch.optim.Optimizer, | |
warmup_steps: Union[int, float] = 25000, | |
last_epoch: int = -1, | |
): | |
self.warmup_steps = warmup_steps | |
# __init__() must be invoked before setting field | |
# because step() is also invoked in __init__() | |
super().__init__(optimizer, last_epoch) | |
def __repr__(self): | |
return f"{self.__class__.__name__}(warmup_steps={self.warmup_steps})" | |
def get_lr(self): | |
step_num = self.last_epoch + 1 | |
return [ | |
lr | |
* self.warmup_steps**0.5 | |
* min(step_num**-0.5, step_num * self.warmup_steps**-1.5) | |
for lr in self.base_lrs | |
] | |