Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import math | |
import torch | |
import torch.optim | |
class FairseqAdam(torch.optim.Optimizer): | |
r"""Implements Adam algorithm. | |
This implementation is modified from torch.optim.Adam based on: | |
`Fixed Weight Decay Regularization in Adam` | |
(see https://arxiv.org/abs/1711.05101) | |
It has been proposed in `Adam: A Method for Stochastic Optimization`_. | |
Args: | |
params (iterable): iterable of parameters to optimize or dicts defining | |
parameter groups | |
lr (float, optional): learning rate (default: 1e-3) | |
betas (Tuple[float, float], optional): coefficients used for computing | |
running averages of gradient and its square (default: (0.9, 0.999)) | |
eps (float, optional): term added to the denominator to improve | |
numerical stability (default: 1e-8) | |
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) | |
amsgrad (boolean, optional): whether to use the AMSGrad variant of this | |
algorithm from the paper `On the Convergence of Adam and Beyond`_ | |
.. _Adam\: A Method for Stochastic Optimization: | |
https://arxiv.org/abs/1412.6980 | |
.. _On the Convergence of Adam and Beyond: | |
https://openreview.net/forum?id=ryQu7f-RZ | |
""" | |
def __init__( | |
self, | |
params, | |
lr=1e-3, | |
adam_betas=(0.9, 0.999), | |
adam_eps=1e-8, | |
weight_decay=0, | |
amsgrad=False, | |
): | |
defaults = dict( | |
lr=lr, | |
betas=adam_betas, | |
eps=adam_eps, | |
weight_decay=weight_decay, | |
amsgrad=amsgrad, | |
) | |
super(FairseqAdam, self).__init__(params, defaults) | |
self.optimizer_lr = lr | |
def supports_memory_efficient_fp16(self): | |
return True | |
def supports_flat_params(self): | |
return True | |
def step(self, closure=None): | |
"""Performs a single optimization step. | |
Args: | |
closure (callable, optional): A closure that reevaluates the model | |
and returns the loss. | |
""" | |
loss = None | |
if closure is not None: | |
loss = closure() | |
for group in self.param_groups: | |
for p in group["params"]: | |
if p.grad is None: | |
continue | |
grad = p.grad.data | |
if grad.dtype in {torch.float16, torch.bfloat16}: | |
grad = grad.float() | |
if grad.is_sparse: | |
raise RuntimeError( | |
"Adam does not support sparse gradients, please consider SparseAdam instead" | |
) | |
amsgrad = group.get("amsgrad", False) | |
p_data_fp32 = p.data | |
if p.data.dtype in {torch.float16, torch.bfloat16}: | |
p_data_fp32 = p_data_fp32.float() | |
state = self.state[p] | |
# State initialization | |
if len(state) == 0: | |
state["step"] = 0 | |
# Exponential moving average of gradient values | |
state["exp_avg"] = torch.zeros_like(p_data_fp32) | |
# Exponential moving average of squared gradient values | |
state["exp_avg_sq"] = torch.zeros_like(p_data_fp32) | |
if amsgrad: | |
# Maintains max of all exp. moving avg. of sq. grad. values | |
state["max_exp_avg_sq"] = torch.zeros_like(p_data_fp32) | |
else: | |
state["exp_avg"] = state["exp_avg"].to(p_data_fp32) | |
state["exp_avg_sq"] = state["exp_avg_sq"].to(p_data_fp32) | |
if amsgrad: | |
state["max_exp_avg_sq"] = state["max_exp_avg_sq"].to( | |
p_data_fp32 | |
) | |
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] | |
if amsgrad: | |
max_exp_avg_sq = state["max_exp_avg_sq"] | |
beta1, beta2 = group["betas"] | |
state["step"] += 1 | |
# Decay the first and second moment running average coefficient | |
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) | |
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) | |
if amsgrad: | |
# Maintains the maximum of all 2nd moment running avg. till now | |
torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) | |
# Use the max. for normalizing running avg. of gradient | |
denom = max_exp_avg_sq.sqrt().add_(group["eps"]) | |
else: | |
denom = exp_avg_sq.sqrt().add_(group["eps"]) | |
bias_correction1 = 1 - beta1 ** state["step"] | |
bias_correction2 = 1 - beta2 ** state["step"] | |
step_size = group["lr"] * math.sqrt(bias_correction2) / bias_correction1 | |
if group["weight_decay"] != 0: | |
p_data_fp32.add_( | |
p_data_fp32, alpha=-group["weight_decay"] * group["lr"] | |
) | |
p_data_fp32.addcdiv_(exp_avg, denom, value=-step_size) | |
if p.data.dtype in {torch.float16, torch.bfloat16}: | |
p.data.copy_(p_data_fp32) | |
return loss | |
def set_lr(self, lr): | |
"""Set the learning rate.""" | |
for param_group in self.param_groups: | |
param_group["lr"] = lr | |