Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# -*- encoding: utf-8 -*- | |
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. | |
# MIT License (https://opensource.org/licenses/MIT) | |
import time | |
import torch | |
import logging | |
from torch.cuda.amp import autocast | |
from typing import Union, Dict, List, Tuple, Optional | |
from funasr_detach.register import tables | |
from funasr_detach.models.ctc.ctc import CTC | |
from funasr_detach.utils import postprocess_utils | |
from funasr_detach.metrics.compute_acc import th_accuracy | |
from funasr_detach.utils.datadir_writer import DatadirWriter | |
from funasr_detach.models.paraformer.cif_predictor import mae_loss | |
from funasr_detach.train_utils.device_funcs import force_gatherable | |
from funasr_detach.losses.label_smoothing_loss import LabelSmoothingLoss | |
from funasr_detach.models.transformer.utils.add_sos_eos import add_sos_eos | |
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask, pad_list | |
from funasr_detach.utils.load_utils import load_audio_text_image_video, extract_fbank | |
from funasr_detach.models.scama.utils import sequence_mask | |
class UniASR(torch.nn.Module): | |
""" | |
Author: Speech Lab of DAMO Academy, Alibaba Group | |
""" | |
def __init__( | |
self, | |
specaug: str = None, | |
specaug_conf: dict = None, | |
normalize: str = None, | |
normalize_conf: dict = None, | |
encoder: str = None, | |
encoder_conf: dict = None, | |
encoder2: str = None, | |
encoder2_conf: dict = None, | |
decoder: str = None, | |
decoder_conf: dict = None, | |
decoder2: str = None, | |
decoder2_conf: dict = None, | |
predictor: str = None, | |
predictor_conf: dict = None, | |
predictor_bias: int = 0, | |
predictor_weight: float = 0.0, | |
predictor2: str = None, | |
predictor2_conf: dict = None, | |
predictor2_bias: int = 0, | |
predictor2_weight: float = 0.0, | |
ctc: str = None, | |
ctc_conf: dict = None, | |
ctc_weight: float = 0.5, | |
ctc2: str = None, | |
ctc2_conf: dict = None, | |
ctc2_weight: float = 0.5, | |
decoder_attention_chunk_type: str = "chunk", | |
decoder_attention_chunk_type2: str = "chunk", | |
stride_conv=None, | |
stride_conv_conf: dict = None, | |
loss_weight_model1: float = 0.5, | |
input_size: int = 80, | |
vocab_size: int = -1, | |
ignore_id: int = -1, | |
blank_id: int = 0, | |
sos: int = 1, | |
eos: int = 2, | |
lsm_weight: float = 0.0, | |
length_normalized_loss: bool = False, | |
share_embedding: bool = False, | |
**kwargs, | |
): | |
super().__init__() | |
if specaug is not None: | |
specaug_class = tables.specaug_classes.get(specaug) | |
specaug = specaug_class(**specaug_conf) | |
if normalize is not None: | |
normalize_class = tables.normalize_classes.get(normalize) | |
normalize = normalize_class(**normalize_conf) | |
encoder_class = tables.encoder_classes.get(encoder) | |
encoder = encoder_class(input_size=input_size, **encoder_conf) | |
encoder_output_size = encoder.output_size() | |
decoder_class = tables.decoder_classes.get(decoder) | |
decoder = decoder_class( | |
vocab_size=vocab_size, | |
encoder_output_size=encoder_output_size, | |
**decoder_conf, | |
) | |
predictor_class = tables.predictor_classes.get(predictor) | |
predictor = predictor_class(**predictor_conf) | |
from funasr_detach.models.transformer.utils.subsampling import Conv1dSubsampling | |
stride_conv = Conv1dSubsampling( | |
**stride_conv_conf, | |
idim=input_size + encoder_output_size, | |
odim=input_size + encoder_output_size, | |
) | |
stride_conv_output_size = stride_conv.output_size() | |
encoder_class = tables.encoder_classes.get(encoder2) | |
encoder2 = encoder_class(input_size=stride_conv_output_size, **encoder2_conf) | |
encoder2_output_size = encoder2.output_size() | |
decoder_class = tables.decoder_classes.get(decoder2) | |
decoder2 = decoder_class( | |
vocab_size=vocab_size, | |
encoder_output_size=encoder2_output_size, | |
**decoder2_conf, | |
) | |
predictor_class = tables.predictor_classes.get(predictor2) | |
predictor2 = predictor_class(**predictor2_conf) | |
self.blank_id = blank_id | |
self.sos = sos | |
self.eos = eos | |
self.vocab_size = vocab_size | |
self.ignore_id = ignore_id | |
self.ctc_weight = ctc_weight | |
self.ctc2_weight = ctc2_weight | |
self.specaug = specaug | |
self.normalize = normalize | |
self.encoder = encoder | |
self.error_calculator = None | |
self.decoder = decoder | |
self.ctc = None | |
self.ctc2 = None | |
self.criterion_att = LabelSmoothingLoss( | |
size=vocab_size, | |
padding_idx=ignore_id, | |
smoothing=lsm_weight, | |
normalize_length=length_normalized_loss, | |
) | |
self.predictor = predictor | |
self.predictor_weight = predictor_weight | |
self.criterion_pre = mae_loss(normalize_length=length_normalized_loss) | |
self.encoder1_encoder2_joint_training = kwargs.get( | |
"encoder1_encoder2_joint_training", True | |
) | |
if self.encoder.overlap_chunk_cls is not None: | |
from funasr_detach.models.scama.chunk_utilis import ( | |
build_scama_mask_for_cross_attention_decoder, | |
) | |
self.build_scama_mask_for_cross_attention_decoder_fn = ( | |
build_scama_mask_for_cross_attention_decoder | |
) | |
self.decoder_attention_chunk_type = decoder_attention_chunk_type | |
self.encoder2 = encoder2 | |
self.decoder2 = decoder2 | |
self.ctc2_weight = ctc2_weight | |
self.predictor2 = predictor2 | |
self.predictor2_weight = predictor2_weight | |
self.decoder_attention_chunk_type2 = decoder_attention_chunk_type2 | |
self.stride_conv = stride_conv | |
self.loss_weight_model1 = loss_weight_model1 | |
if self.encoder2.overlap_chunk_cls is not None: | |
from funasr_detach.models.scama.chunk_utilis import ( | |
build_scama_mask_for_cross_attention_decoder, | |
) | |
self.build_scama_mask_for_cross_attention_decoder_fn2 = ( | |
build_scama_mask_for_cross_attention_decoder | |
) | |
self.decoder_attention_chunk_type2 = decoder_attention_chunk_type2 | |
self.length_normalized_loss = length_normalized_loss | |
self.enable_maas_finetune = kwargs.get("enable_maas_finetune", False) | |
self.freeze_encoder2 = kwargs.get("freeze_encoder2", False) | |
self.beam_search = None | |
def forward( | |
self, | |
speech: torch.Tensor, | |
speech_lengths: torch.Tensor, | |
text: torch.Tensor, | |
text_lengths: torch.Tensor, | |
**kwargs, | |
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]: | |
"""Frontend + Encoder + Decoder + Calc loss | |
Args: | |
speech: (Batch, Length, ...) | |
speech_lengths: (Batch, ) | |
text: (Batch, Length) | |
text_lengths: (Batch,) | |
""" | |
decoding_ind = kwargs.get("decoding_ind", None) | |
if len(text_lengths.size()) > 1: | |
text_lengths = text_lengths[:, 0] | |
if len(speech_lengths.size()) > 1: | |
speech_lengths = speech_lengths[:, 0] | |
batch_size = speech.shape[0] | |
ind = self.encoder.overlap_chunk_cls.random_choice(self.training, decoding_ind) | |
# 1. Encoder | |
if self.enable_maas_finetune: | |
with torch.no_grad(): | |
speech_raw, encoder_out, encoder_out_lens = self.encode( | |
speech, speech_lengths, ind=ind | |
) | |
else: | |
speech_raw, encoder_out, encoder_out_lens = self.encode( | |
speech, speech_lengths, ind=ind | |
) | |
loss_att, acc_att, cer_att, wer_att = None, None, None, None | |
loss_ctc, cer_ctc = None, None | |
stats = dict() | |
loss_pre = None | |
loss, loss1, loss2 = 0.0, 0.0, 0.0 | |
if self.loss_weight_model1 > 0.0: | |
## model1 | |
# 1. CTC branch | |
if self.enable_maas_finetune: | |
with torch.no_grad(): | |
loss_att, acc_att, cer_att, wer_att, loss_pre = ( | |
self._calc_att_predictor_loss( | |
encoder_out, encoder_out_lens, text, text_lengths | |
) | |
) | |
loss = loss_att + loss_pre * self.predictor_weight | |
# Collect Attn branch stats | |
stats["loss_att"] = ( | |
loss_att.detach() if loss_att is not None else None | |
) | |
stats["acc"] = acc_att | |
stats["cer"] = cer_att | |
stats["wer"] = wer_att | |
stats["loss_pre"] = ( | |
loss_pre.detach().cpu() if loss_pre is not None else None | |
) | |
else: | |
loss_att, acc_att, cer_att, wer_att, loss_pre = ( | |
self._calc_att_predictor_loss( | |
encoder_out, encoder_out_lens, text, text_lengths | |
) | |
) | |
loss = loss_att + loss_pre * self.predictor_weight | |
# Collect Attn branch stats | |
stats["loss_att"] = loss_att.detach() if loss_att is not None else None | |
stats["acc"] = acc_att | |
stats["cer"] = cer_att | |
stats["wer"] = wer_att | |
stats["loss_pre"] = ( | |
loss_pre.detach().cpu() if loss_pre is not None else None | |
) | |
loss1 = loss | |
if self.loss_weight_model1 < 1.0: | |
## model2 | |
# encoder2 | |
if self.freeze_encoder2: | |
with torch.no_grad(): | |
encoder_out, encoder_out_lens = self.encode2( | |
encoder_out, | |
encoder_out_lens, | |
speech_raw, | |
speech_lengths, | |
ind=ind, | |
) | |
else: | |
encoder_out, encoder_out_lens = self.encode2( | |
encoder_out, encoder_out_lens, speech_raw, speech_lengths, ind=ind | |
) | |
intermediate_outs = None | |
if isinstance(encoder_out, tuple): | |
intermediate_outs = encoder_out[1] | |
encoder_out = encoder_out[0] | |
loss_att, acc_att, cer_att, wer_att, loss_pre = ( | |
self._calc_att_predictor_loss2( | |
encoder_out, encoder_out_lens, text, text_lengths | |
) | |
) | |
loss = loss_att + loss_pre * self.predictor2_weight | |
# Collect Attn branch stats | |
stats["loss_att2"] = loss_att.detach() if loss_att is not None else None | |
stats["acc2"] = acc_att | |
stats["cer2"] = cer_att | |
stats["wer2"] = wer_att | |
stats["loss_pre2"] = ( | |
loss_pre.detach().cpu() if loss_pre is not None else None | |
) | |
loss2 = loss | |
loss = loss1 * self.loss_weight_model1 + loss2 * (1 - self.loss_weight_model1) | |
stats["loss1"] = torch.clone(loss1.detach()) | |
stats["loss2"] = torch.clone(loss2.detach()) | |
stats["loss"] = torch.clone(loss.detach()) | |
# force_gatherable: to-device and to-tensor if scalar for DataParallel | |
if self.length_normalized_loss: | |
batch_size = int((text_lengths + 1).sum()) | |
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) | |
return loss, stats, weight | |
def collect_feats( | |
self, | |
speech: torch.Tensor, | |
speech_lengths: torch.Tensor, | |
text: torch.Tensor, | |
text_lengths: torch.Tensor, | |
) -> Dict[str, torch.Tensor]: | |
if self.extract_feats_in_collect_stats: | |
feats, feats_lengths = self._extract_feats(speech, speech_lengths) | |
else: | |
# Generate dummy stats if extract_feats_in_collect_stats is False | |
logging.warning( | |
"Generating dummy stats for feats and feats_lengths, " | |
"because encoder_conf.extract_feats_in_collect_stats is " | |
f"{self.extract_feats_in_collect_stats}" | |
) | |
feats, feats_lengths = speech, speech_lengths | |
return {"feats": feats, "feats_lengths": feats_lengths} | |
def encode( | |
self, | |
speech: torch.Tensor, | |
speech_lengths: torch.Tensor, | |
**kwargs, | |
): | |
"""Frontend + Encoder. Note that this method is used by asr_inference.py | |
Args: | |
speech: (Batch, Length, ...) | |
speech_lengths: (Batch, ) | |
""" | |
ind = kwargs.get("ind", 0) | |
with autocast(False): | |
# Data augmentation | |
if self.specaug is not None and self.training: | |
speech, speech_lengths = self.specaug(speech, speech_lengths) | |
# Normalization for feature: e.g. Global-CMVN, Utterance-CMVN | |
if self.normalize is not None: | |
speech, speech_lengths = self.normalize(speech, speech_lengths) | |
speech_raw = speech.clone().to(speech.device) | |
# 4. Forward encoder | |
encoder_out, encoder_out_lens, _ = self.encoder(speech, speech_lengths, ind=ind) | |
if isinstance(encoder_out, tuple): | |
encoder_out = encoder_out[0] | |
return speech_raw, encoder_out, encoder_out_lens | |
def encode2( | |
self, | |
encoder_out: torch.Tensor, | |
encoder_out_lens: torch.Tensor, | |
speech: torch.Tensor, | |
speech_lengths: torch.Tensor, | |
**kwargs, | |
): | |
"""Frontend + Encoder. Note that this method is used by asr_inference.py | |
Args: | |
speech: (Batch, Length, ...) | |
speech_lengths: (Batch, ) | |
""" | |
ind = kwargs.get("ind", 0) | |
encoder_out_rm, encoder_out_lens_rm = ( | |
self.encoder.overlap_chunk_cls.remove_chunk( | |
encoder_out, | |
encoder_out_lens, | |
chunk_outs=None, | |
) | |
) | |
# residual_input | |
encoder_out = torch.cat((speech, encoder_out_rm), dim=-1) | |
encoder_out_lens = encoder_out_lens_rm | |
if self.stride_conv is not None: | |
speech, speech_lengths = self.stride_conv(encoder_out, encoder_out_lens) | |
if not self.encoder1_encoder2_joint_training: | |
speech = speech.detach() | |
speech_lengths = speech_lengths.detach() | |
# 4. Forward encoder | |
# feats: (Batch, Length, Dim) | |
# -> encoder_out: (Batch, Length2, Dim2) | |
encoder_out, encoder_out_lens, _ = self.encoder2( | |
speech, speech_lengths, ind=ind | |
) | |
if isinstance(encoder_out, tuple): | |
encoder_out = encoder_out[0] | |
return encoder_out, encoder_out_lens | |
def nll( | |
self, | |
encoder_out: torch.Tensor, | |
encoder_out_lens: torch.Tensor, | |
ys_pad: torch.Tensor, | |
ys_pad_lens: torch.Tensor, | |
) -> torch.Tensor: | |
"""Compute negative log likelihood(nll) from transformer-decoder | |
Normally, this function is called in batchify_nll. | |
Args: | |
encoder_out: (Batch, Length, Dim) | |
encoder_out_lens: (Batch,) | |
ys_pad: (Batch, Length) | |
ys_pad_lens: (Batch,) | |
""" | |
ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) | |
ys_in_lens = ys_pad_lens + 1 | |
# 1. Forward decoder | |
decoder_out, _ = self.decoder( | |
encoder_out, encoder_out_lens, ys_in_pad, ys_in_lens | |
) # [batch, seqlen, dim] | |
batch_size = decoder_out.size(0) | |
decoder_num_class = decoder_out.size(2) | |
# nll: negative log-likelihood | |
nll = torch.nn.functional.cross_entropy( | |
decoder_out.view(-1, decoder_num_class), | |
ys_out_pad.view(-1), | |
ignore_index=self.ignore_id, | |
reduction="none", | |
) | |
nll = nll.view(batch_size, -1) | |
nll = nll.sum(dim=1) | |
assert nll.size(0) == batch_size | |
return nll | |
def batchify_nll( | |
self, | |
encoder_out: torch.Tensor, | |
encoder_out_lens: torch.Tensor, | |
ys_pad: torch.Tensor, | |
ys_pad_lens: torch.Tensor, | |
batch_size: int = 100, | |
): | |
"""Compute negative log likelihood(nll) from transformer-decoder | |
To avoid OOM, this fuction seperate the input into batches. | |
Then call nll for each batch and combine and return results. | |
Args: | |
encoder_out: (Batch, Length, Dim) | |
encoder_out_lens: (Batch,) | |
ys_pad: (Batch, Length) | |
ys_pad_lens: (Batch,) | |
batch_size: int, samples each batch contain when computing nll, | |
you may change this to avoid OOM or increase | |
GPU memory usage | |
""" | |
total_num = encoder_out.size(0) | |
if total_num <= batch_size: | |
nll = self.nll(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens) | |
else: | |
nll = [] | |
start_idx = 0 | |
while True: | |
end_idx = min(start_idx + batch_size, total_num) | |
batch_encoder_out = encoder_out[start_idx:end_idx, :, :] | |
batch_encoder_out_lens = encoder_out_lens[start_idx:end_idx] | |
batch_ys_pad = ys_pad[start_idx:end_idx, :] | |
batch_ys_pad_lens = ys_pad_lens[start_idx:end_idx] | |
batch_nll = self.nll( | |
batch_encoder_out, | |
batch_encoder_out_lens, | |
batch_ys_pad, | |
batch_ys_pad_lens, | |
) | |
nll.append(batch_nll) | |
start_idx = end_idx | |
if start_idx == total_num: | |
break | |
nll = torch.cat(nll) | |
assert nll.size(0) == total_num | |
return nll | |
def _calc_att_loss( | |
self, | |
encoder_out: torch.Tensor, | |
encoder_out_lens: torch.Tensor, | |
ys_pad: torch.Tensor, | |
ys_pad_lens: torch.Tensor, | |
): | |
ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) | |
ys_in_lens = ys_pad_lens + 1 | |
# 1. Forward decoder | |
decoder_out, _ = self.decoder( | |
encoder_out, encoder_out_lens, ys_in_pad, ys_in_lens | |
) | |
# 2. Compute attention loss | |
loss_att = self.criterion_att(decoder_out, ys_out_pad) | |
acc_att = th_accuracy( | |
decoder_out.view(-1, self.vocab_size), | |
ys_out_pad, | |
ignore_label=self.ignore_id, | |
) | |
# Compute cer/wer using attention-decoder | |
if self.training or self.error_calculator is None: | |
cer_att, wer_att = None, None | |
else: | |
ys_hat = decoder_out.argmax(dim=-1) | |
cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu()) | |
return loss_att, acc_att, cer_att, wer_att | |
def _calc_att_predictor_loss( | |
self, | |
encoder_out: torch.Tensor, | |
encoder_out_lens: torch.Tensor, | |
ys_pad: torch.Tensor, | |
ys_pad_lens: torch.Tensor, | |
): | |
ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) | |
ys_in_lens = ys_pad_lens + 1 | |
encoder_out_mask = sequence_mask( | |
encoder_out_lens, | |
maxlen=encoder_out.size(1), | |
dtype=encoder_out.dtype, | |
device=encoder_out.device, | |
)[:, None, :] | |
mask_chunk_predictor = None | |
if self.encoder.overlap_chunk_cls is not None: | |
mask_chunk_predictor = ( | |
self.encoder.overlap_chunk_cls.get_mask_chunk_predictor( | |
None, device=encoder_out.device, batch_size=encoder_out.size(0) | |
) | |
) | |
mask_shfit_chunk = self.encoder.overlap_chunk_cls.get_mask_shfit_chunk( | |
None, device=encoder_out.device, batch_size=encoder_out.size(0) | |
) | |
encoder_out = encoder_out * mask_shfit_chunk | |
pre_acoustic_embeds, pre_token_length, pre_alphas, _ = self.predictor( | |
encoder_out, | |
ys_out_pad, | |
encoder_out_mask, | |
ignore_id=self.ignore_id, | |
mask_chunk_predictor=mask_chunk_predictor, | |
target_label_length=ys_in_lens, | |
) | |
predictor_alignments, predictor_alignments_len = ( | |
self.predictor.gen_frame_alignments(pre_alphas, encoder_out_lens) | |
) | |
scama_mask = None | |
if ( | |
self.encoder.overlap_chunk_cls is not None | |
and self.decoder_attention_chunk_type == "chunk" | |
): | |
encoder_chunk_size = self.encoder.overlap_chunk_cls.chunk_size_pad_shift_cur | |
attention_chunk_center_bias = 0 | |
attention_chunk_size = encoder_chunk_size | |
decoder_att_look_back_factor = ( | |
self.encoder.overlap_chunk_cls.decoder_att_look_back_factor_cur | |
) | |
mask_shift_att_chunk_decoder = ( | |
self.encoder.overlap_chunk_cls.get_mask_shift_att_chunk_decoder( | |
None, device=encoder_out.device, batch_size=encoder_out.size(0) | |
) | |
) | |
scama_mask = self.build_scama_mask_for_cross_attention_decoder_fn( | |
predictor_alignments=predictor_alignments, | |
encoder_sequence_length=encoder_out_lens, | |
chunk_size=1, | |
encoder_chunk_size=encoder_chunk_size, | |
attention_chunk_center_bias=attention_chunk_center_bias, | |
attention_chunk_size=attention_chunk_size, | |
attention_chunk_type=self.decoder_attention_chunk_type, | |
step=None, | |
predictor_mask_chunk_hopping=mask_chunk_predictor, | |
decoder_att_look_back_factor=decoder_att_look_back_factor, | |
mask_shift_att_chunk_decoder=mask_shift_att_chunk_decoder, | |
target_length=ys_in_lens, | |
is_training=self.training, | |
) | |
elif self.encoder.overlap_chunk_cls is not None: | |
encoder_out, encoder_out_lens = self.encoder.overlap_chunk_cls.remove_chunk( | |
encoder_out, encoder_out_lens, chunk_outs=None | |
) | |
# try: | |
# 1. Forward decoder | |
decoder_out, _ = self.decoder( | |
encoder_out, | |
encoder_out_lens, | |
ys_in_pad, | |
ys_in_lens, | |
chunk_mask=scama_mask, | |
pre_acoustic_embeds=pre_acoustic_embeds, | |
) | |
# 2. Compute attention loss | |
loss_att = self.criterion_att(decoder_out, ys_out_pad) | |
acc_att = th_accuracy( | |
decoder_out.view(-1, self.vocab_size), | |
ys_out_pad, | |
ignore_label=self.ignore_id, | |
) | |
# predictor loss | |
loss_pre = self.criterion_pre( | |
ys_in_lens.type_as(pre_token_length), pre_token_length | |
) | |
# Compute cer/wer using attention-decoder | |
if self.training or self.error_calculator is None: | |
cer_att, wer_att = None, None | |
else: | |
ys_hat = decoder_out.argmax(dim=-1) | |
cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu()) | |
return loss_att, acc_att, cer_att, wer_att, loss_pre | |
def _calc_att_predictor_loss2( | |
self, | |
encoder_out: torch.Tensor, | |
encoder_out_lens: torch.Tensor, | |
ys_pad: torch.Tensor, | |
ys_pad_lens: torch.Tensor, | |
): | |
ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) | |
ys_in_lens = ys_pad_lens + 1 | |
encoder_out_mask = sequence_mask( | |
encoder_out_lens, | |
maxlen=encoder_out.size(1), | |
dtype=encoder_out.dtype, | |
device=encoder_out.device, | |
)[:, None, :] | |
mask_chunk_predictor = None | |
if self.encoder2.overlap_chunk_cls is not None: | |
mask_chunk_predictor = ( | |
self.encoder2.overlap_chunk_cls.get_mask_chunk_predictor( | |
None, device=encoder_out.device, batch_size=encoder_out.size(0) | |
) | |
) | |
mask_shfit_chunk = self.encoder2.overlap_chunk_cls.get_mask_shfit_chunk( | |
None, device=encoder_out.device, batch_size=encoder_out.size(0) | |
) | |
encoder_out = encoder_out * mask_shfit_chunk | |
pre_acoustic_embeds, pre_token_length, pre_alphas, _ = self.predictor2( | |
encoder_out, | |
ys_out_pad, | |
encoder_out_mask, | |
ignore_id=self.ignore_id, | |
mask_chunk_predictor=mask_chunk_predictor, | |
target_label_length=ys_in_lens, | |
) | |
predictor_alignments, predictor_alignments_len = ( | |
self.predictor2.gen_frame_alignments(pre_alphas, encoder_out_lens) | |
) | |
scama_mask = None | |
if ( | |
self.encoder2.overlap_chunk_cls is not None | |
and self.decoder_attention_chunk_type2 == "chunk" | |
): | |
encoder_chunk_size = ( | |
self.encoder2.overlap_chunk_cls.chunk_size_pad_shift_cur | |
) | |
attention_chunk_center_bias = 0 | |
attention_chunk_size = encoder_chunk_size | |
decoder_att_look_back_factor = ( | |
self.encoder2.overlap_chunk_cls.decoder_att_look_back_factor_cur | |
) | |
mask_shift_att_chunk_decoder = ( | |
self.encoder2.overlap_chunk_cls.get_mask_shift_att_chunk_decoder( | |
None, device=encoder_out.device, batch_size=encoder_out.size(0) | |
) | |
) | |
scama_mask = self.build_scama_mask_for_cross_attention_decoder_fn2( | |
predictor_alignments=predictor_alignments, | |
encoder_sequence_length=encoder_out_lens, | |
chunk_size=1, | |
encoder_chunk_size=encoder_chunk_size, | |
attention_chunk_center_bias=attention_chunk_center_bias, | |
attention_chunk_size=attention_chunk_size, | |
attention_chunk_type=self.decoder_attention_chunk_type2, | |
step=None, | |
predictor_mask_chunk_hopping=mask_chunk_predictor, | |
decoder_att_look_back_factor=decoder_att_look_back_factor, | |
mask_shift_att_chunk_decoder=mask_shift_att_chunk_decoder, | |
target_length=ys_in_lens, | |
is_training=self.training, | |
) | |
elif self.encoder2.overlap_chunk_cls is not None: | |
encoder_out, encoder_out_lens = ( | |
self.encoder2.overlap_chunk_cls.remove_chunk( | |
encoder_out, encoder_out_lens, chunk_outs=None | |
) | |
) | |
# try: | |
# 1. Forward decoder | |
decoder_out, _ = self.decoder2( | |
encoder_out, | |
encoder_out_lens, | |
ys_in_pad, | |
ys_in_lens, | |
chunk_mask=scama_mask, | |
pre_acoustic_embeds=pre_acoustic_embeds, | |
) | |
# 2. Compute attention loss | |
loss_att = self.criterion_att(decoder_out, ys_out_pad) | |
acc_att = th_accuracy( | |
decoder_out.view(-1, self.vocab_size), | |
ys_out_pad, | |
ignore_label=self.ignore_id, | |
) | |
# predictor loss | |
loss_pre = self.criterion_pre( | |
ys_in_lens.type_as(pre_token_length), pre_token_length | |
) | |
# Compute cer/wer using attention-decoder | |
if self.training or self.error_calculator is None: | |
cer_att, wer_att = None, None | |
else: | |
ys_hat = decoder_out.argmax(dim=-1) | |
cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu()) | |
return loss_att, acc_att, cer_att, wer_att, loss_pre | |
def calc_predictor_mask( | |
self, | |
encoder_out: torch.Tensor, | |
encoder_out_lens: torch.Tensor, | |
ys_pad: torch.Tensor = None, | |
ys_pad_lens: torch.Tensor = None, | |
): | |
# ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) | |
# ys_in_lens = ys_pad_lens + 1 | |
ys_out_pad, ys_in_lens = None, None | |
encoder_out_mask = sequence_mask( | |
encoder_out_lens, | |
maxlen=encoder_out.size(1), | |
dtype=encoder_out.dtype, | |
device=encoder_out.device, | |
)[:, None, :] | |
mask_chunk_predictor = None | |
if self.encoder.overlap_chunk_cls is not None: | |
mask_chunk_predictor = ( | |
self.encoder.overlap_chunk_cls.get_mask_chunk_predictor( | |
None, device=encoder_out.device, batch_size=encoder_out.size(0) | |
) | |
) | |
mask_shfit_chunk = self.encoder.overlap_chunk_cls.get_mask_shfit_chunk( | |
None, device=encoder_out.device, batch_size=encoder_out.size(0) | |
) | |
encoder_out = encoder_out * mask_shfit_chunk | |
pre_acoustic_embeds, pre_token_length, pre_alphas, _ = self.predictor( | |
encoder_out, | |
ys_out_pad, | |
encoder_out_mask, | |
ignore_id=self.ignore_id, | |
mask_chunk_predictor=mask_chunk_predictor, | |
target_label_length=ys_in_lens, | |
) | |
predictor_alignments, predictor_alignments_len = ( | |
self.predictor.gen_frame_alignments(pre_alphas, encoder_out_lens) | |
) | |
scama_mask = None | |
if ( | |
self.encoder.overlap_chunk_cls is not None | |
and self.decoder_attention_chunk_type == "chunk" | |
): | |
encoder_chunk_size = self.encoder.overlap_chunk_cls.chunk_size_pad_shift_cur | |
attention_chunk_center_bias = 0 | |
attention_chunk_size = encoder_chunk_size | |
decoder_att_look_back_factor = ( | |
self.encoder.overlap_chunk_cls.decoder_att_look_back_factor_cur | |
) | |
mask_shift_att_chunk_decoder = ( | |
self.encoder.overlap_chunk_cls.get_mask_shift_att_chunk_decoder( | |
None, device=encoder_out.device, batch_size=encoder_out.size(0) | |
) | |
) | |
scama_mask = self.build_scama_mask_for_cross_attention_decoder_fn( | |
predictor_alignments=predictor_alignments, | |
encoder_sequence_length=encoder_out_lens, | |
chunk_size=1, | |
encoder_chunk_size=encoder_chunk_size, | |
attention_chunk_center_bias=attention_chunk_center_bias, | |
attention_chunk_size=attention_chunk_size, | |
attention_chunk_type=self.decoder_attention_chunk_type, | |
step=None, | |
predictor_mask_chunk_hopping=mask_chunk_predictor, | |
decoder_att_look_back_factor=decoder_att_look_back_factor, | |
mask_shift_att_chunk_decoder=mask_shift_att_chunk_decoder, | |
target_length=ys_in_lens, | |
is_training=self.training, | |
) | |
elif self.encoder.overlap_chunk_cls is not None: | |
encoder_out, encoder_out_lens = self.encoder.overlap_chunk_cls.remove_chunk( | |
encoder_out, encoder_out_lens, chunk_outs=None | |
) | |
return ( | |
pre_acoustic_embeds, | |
pre_token_length, | |
predictor_alignments, | |
predictor_alignments_len, | |
scama_mask, | |
) | |
def calc_predictor_mask2( | |
self, | |
encoder_out: torch.Tensor, | |
encoder_out_lens: torch.Tensor, | |
ys_pad: torch.Tensor = None, | |
ys_pad_lens: torch.Tensor = None, | |
): | |
# ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) | |
# ys_in_lens = ys_pad_lens + 1 | |
ys_out_pad, ys_in_lens = None, None | |
encoder_out_mask = sequence_mask( | |
encoder_out_lens, | |
maxlen=encoder_out.size(1), | |
dtype=encoder_out.dtype, | |
device=encoder_out.device, | |
)[:, None, :] | |
mask_chunk_predictor = None | |
if self.encoder2.overlap_chunk_cls is not None: | |
mask_chunk_predictor = ( | |
self.encoder2.overlap_chunk_cls.get_mask_chunk_predictor( | |
None, device=encoder_out.device, batch_size=encoder_out.size(0) | |
) | |
) | |
mask_shfit_chunk = self.encoder2.overlap_chunk_cls.get_mask_shfit_chunk( | |
None, device=encoder_out.device, batch_size=encoder_out.size(0) | |
) | |
encoder_out = encoder_out * mask_shfit_chunk | |
pre_acoustic_embeds, pre_token_length, pre_alphas, _ = self.predictor2( | |
encoder_out, | |
ys_out_pad, | |
encoder_out_mask, | |
ignore_id=self.ignore_id, | |
mask_chunk_predictor=mask_chunk_predictor, | |
target_label_length=ys_in_lens, | |
) | |
predictor_alignments, predictor_alignments_len = ( | |
self.predictor2.gen_frame_alignments(pre_alphas, encoder_out_lens) | |
) | |
scama_mask = None | |
if ( | |
self.encoder2.overlap_chunk_cls is not None | |
and self.decoder_attention_chunk_type2 == "chunk" | |
): | |
encoder_chunk_size = ( | |
self.encoder2.overlap_chunk_cls.chunk_size_pad_shift_cur | |
) | |
attention_chunk_center_bias = 0 | |
attention_chunk_size = encoder_chunk_size | |
decoder_att_look_back_factor = ( | |
self.encoder2.overlap_chunk_cls.decoder_att_look_back_factor_cur | |
) | |
mask_shift_att_chunk_decoder = ( | |
self.encoder2.overlap_chunk_cls.get_mask_shift_att_chunk_decoder( | |
None, device=encoder_out.device, batch_size=encoder_out.size(0) | |
) | |
) | |
scama_mask = self.build_scama_mask_for_cross_attention_decoder_fn2( | |
predictor_alignments=predictor_alignments, | |
encoder_sequence_length=encoder_out_lens, | |
chunk_size=1, | |
encoder_chunk_size=encoder_chunk_size, | |
attention_chunk_center_bias=attention_chunk_center_bias, | |
attention_chunk_size=attention_chunk_size, | |
attention_chunk_type=self.decoder_attention_chunk_type2, | |
step=None, | |
predictor_mask_chunk_hopping=mask_chunk_predictor, | |
decoder_att_look_back_factor=decoder_att_look_back_factor, | |
mask_shift_att_chunk_decoder=mask_shift_att_chunk_decoder, | |
target_length=ys_in_lens, | |
is_training=self.training, | |
) | |
elif self.encoder2.overlap_chunk_cls is not None: | |
encoder_out, encoder_out_lens = ( | |
self.encoder2.overlap_chunk_cls.remove_chunk( | |
encoder_out, encoder_out_lens, chunk_outs=None | |
) | |
) | |
return ( | |
pre_acoustic_embeds, | |
pre_token_length, | |
predictor_alignments, | |
predictor_alignments_len, | |
scama_mask, | |
) | |
def init_beam_search( | |
self, | |
**kwargs, | |
): | |
from funasr_detach.models.uniasr.beam_search import BeamSearchScama | |
from funasr_detach.models.transformer.scorers.ctc import CTCPrefixScorer | |
from funasr_detach.models.transformer.scorers.length_bonus import LengthBonus | |
decoding_mode = kwargs.get("decoding_mode", "model1") | |
if decoding_mode == "model1": | |
decoder = self.decoder | |
else: | |
decoder = self.decoder2 | |
# 1. Build ASR model | |
scorers = {} | |
if self.ctc != None: | |
ctc = CTCPrefixScorer(ctc=self.ctc, eos=self.eos) | |
scorers.update(ctc=ctc) | |
token_list = kwargs.get("token_list") | |
scorers.update( | |
decoder=decoder, | |
length_bonus=LengthBonus(len(token_list)), | |
) | |
# 3. Build ngram model | |
# ngram is not supported now | |
ngram = None | |
scorers["ngram"] = ngram | |
weights = dict( | |
decoder=1.0 - kwargs.get("decoding_ctc_weight", 0.0), | |
ctc=kwargs.get("decoding_ctc_weight", 0.0), | |
lm=kwargs.get("lm_weight", 0.0), | |
ngram=kwargs.get("ngram_weight", 0.0), | |
length_bonus=kwargs.get("penalty", 0.0), | |
) | |
beam_search = BeamSearchScama( | |
beam_size=kwargs.get("beam_size", 5), | |
weights=weights, | |
scorers=scorers, | |
sos=self.sos, | |
eos=self.eos, | |
vocab_size=len(token_list), | |
token_list=token_list, | |
pre_beam_score_key=None if self.ctc_weight == 1.0 else "full", | |
) | |
self.beam_search = beam_search | |
def inference( | |
self, | |
data_in, | |
data_lengths=None, | |
key: list = None, | |
tokenizer=None, | |
frontend=None, | |
**kwargs, | |
): | |
decoding_model = kwargs.get("decoding_model", "normal") | |
token_num_relax = kwargs.get("token_num_relax", 5) | |
if decoding_model == "fast": | |
decoding_ind = 0 | |
decoding_mode = "model1" | |
elif decoding_model == "offline": | |
decoding_ind = 1 | |
decoding_mode = "model2" | |
else: | |
decoding_ind = 0 | |
decoding_mode = "model2" | |
# init beamsearch | |
if self.beam_search is None: | |
logging.info("enable beam_search") | |
self.init_beam_search(decoding_mode=decoding_mode, **kwargs) | |
self.nbest = kwargs.get("nbest", 1) | |
meta_data = {} | |
if ( | |
isinstance(data_in, torch.Tensor) | |
and kwargs.get("data_type", "sound") == "fbank" | |
): # fbank | |
speech, speech_lengths = data_in, data_lengths | |
if len(speech.shape) < 3: | |
speech = speech[None, :, :] | |
if speech_lengths is None: | |
speech_lengths = speech.shape[1] | |
else: | |
# extract fbank feats | |
time1 = time.perf_counter() | |
audio_sample_list = load_audio_text_image_video( | |
data_in, | |
fs=frontend.fs, | |
audio_fs=kwargs.get("fs", 16000), | |
data_type=kwargs.get("data_type", "sound"), | |
tokenizer=tokenizer, | |
) | |
time2 = time.perf_counter() | |
meta_data["load_data"] = f"{time2 - time1:0.3f}" | |
speech, speech_lengths = extract_fbank( | |
audio_sample_list, | |
data_type=kwargs.get("data_type", "sound"), | |
frontend=frontend, | |
) | |
time3 = time.perf_counter() | |
meta_data["extract_feat"] = f"{time3 - time2:0.3f}" | |
meta_data["batch_data_time"] = ( | |
speech_lengths.sum().item() | |
* frontend.frame_shift | |
* frontend.lfr_n | |
/ 1000 | |
) | |
speech = speech.to(device=kwargs["device"]) | |
speech_lengths = speech_lengths.to(device=kwargs["device"]) | |
speech_raw = speech.clone().to(device=kwargs["device"]) | |
# Encoder | |
_, encoder_out, encoder_out_lens = self.encode( | |
speech, speech_lengths, ind=decoding_ind | |
) | |
if decoding_mode == "model1": | |
predictor_outs = self.calc_predictor_mask(encoder_out, encoder_out_lens) | |
else: | |
encoder_out, encoder_out_lens = self.encode2( | |
encoder_out, | |
encoder_out_lens, | |
speech_raw, | |
speech_lengths, | |
ind=decoding_ind, | |
) | |
predictor_outs = self.calc_predictor_mask2(encoder_out, encoder_out_lens) | |
scama_mask = predictor_outs[4] | |
pre_token_length = predictor_outs[1] | |
pre_acoustic_embeds = predictor_outs[0] | |
maxlen = pre_token_length.sum().item() + token_num_relax | |
minlen = max(0, pre_token_length.sum().item() - token_num_relax) | |
# c. Passed the encoder result and the beam search | |
nbest_hyps = self.beam_search( | |
x=encoder_out[0], | |
scama_mask=scama_mask, | |
pre_acoustic_embeds=pre_acoustic_embeds, | |
maxlenratio=0.0, | |
minlenratio=0.0, | |
maxlen=int(maxlen), | |
minlen=int(minlen), | |
) | |
nbest_hyps = nbest_hyps[: self.nbest] | |
results = [] | |
for hyp in nbest_hyps: | |
# remove sos/eos and get results | |
last_pos = -1 | |
if isinstance(hyp.yseq, list): | |
token_int = hyp.yseq[1:last_pos] | |
else: | |
token_int = hyp.yseq[1:last_pos].tolist() | |
# remove blank symbol id, which is assumed to be 0 | |
token_int = list(filter(lambda x: x != 0, token_int)) | |
# Change integer-ids to tokens | |
token = tokenizer.ids2tokens(token_int) | |
text_postprocessed = tokenizer.tokens2text(token) | |
if not hasattr(tokenizer, "bpemodel"): | |
text_postprocessed, _ = postprocess_utils.sentence_postprocess(token) | |
result_i = {"key": key[0], "text": text_postprocessed} | |
results.append(result_i) | |
return results, meta_data | |