Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# -*- encoding: utf-8 -*- | |
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. | |
# MIT License (https://opensource.org/licenses/MIT) | |
import time | |
import torch | |
import logging | |
from contextlib import contextmanager | |
from typing import Dict, Optional, Tuple | |
from distutils.version import LooseVersion | |
from funasr_detach.register import tables | |
from funasr_detach.utils import postprocess_utils | |
from funasr_detach.utils.datadir_writer import DatadirWriter | |
from funasr_detach.train_utils.device_funcs import force_gatherable | |
from funasr_detach.models.transformer.scorers.ctc import CTCPrefixScorer | |
from funasr_detach.losses.label_smoothing_loss import LabelSmoothingLoss | |
from funasr_detach.models.transformer.scorers.length_bonus import LengthBonus | |
from funasr_detach.models.transformer.utils.nets_utils import get_transducer_task_io | |
from funasr_detach.utils.load_utils import load_audio_text_image_video, extract_fbank | |
from funasr_detach.models.transducer.beam_search_transducer import BeamSearchTransducer | |
if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"): | |
from torch.cuda.amp import autocast | |
else: | |
# Nothing to do if torch<1.6.0 | |
def autocast(enabled=True): | |
yield | |
class Transducer(torch.nn.Module): | |
def __init__( | |
self, | |
frontend: Optional[str] = None, | |
frontend_conf: Optional[Dict] = None, | |
specaug: Optional[str] = None, | |
specaug_conf: Optional[Dict] = None, | |
normalize: str = None, | |
normalize_conf: Optional[Dict] = None, | |
encoder: str = None, | |
encoder_conf: Optional[Dict] = None, | |
decoder: str = None, | |
decoder_conf: Optional[Dict] = None, | |
joint_network: str = None, | |
joint_network_conf: Optional[Dict] = None, | |
transducer_weight: float = 1.0, | |
fastemit_lambda: float = 0.0, | |
auxiliary_ctc_weight: float = 0.0, | |
auxiliary_ctc_dropout_rate: float = 0.0, | |
auxiliary_lm_loss_weight: float = 0.0, | |
auxiliary_lm_loss_smoothing: float = 0.0, | |
input_size: int = 80, | |
vocab_size: int = -1, | |
ignore_id: int = -1, | |
blank_id: int = 0, | |
sos: int = 1, | |
eos: int = 2, | |
lsm_weight: float = 0.0, | |
length_normalized_loss: bool = False, | |
# report_cer: bool = True, | |
# report_wer: bool = True, | |
# sym_space: str = "<space>", | |
# sym_blank: str = "<blank>", | |
# extract_feats_in_collect_stats: bool = True, | |
share_embedding: bool = False, | |
# preencoder: Optional[AbsPreEncoder] = None, | |
# postencoder: Optional[AbsPostEncoder] = None, | |
**kwargs, | |
): | |
super().__init__() | |
if specaug is not None: | |
specaug_class = tables.specaug_classes.get(specaug) | |
specaug = specaug_class(**specaug_conf) | |
if normalize is not None: | |
normalize_class = tables.normalize_classes.get(normalize) | |
normalize = normalize_class(**normalize_conf) | |
encoder_class = tables.encoder_classes.get(encoder) | |
encoder = encoder_class(input_size=input_size, **encoder_conf) | |
encoder_output_size = encoder.output_size() | |
decoder_class = tables.decoder_classes.get(decoder) | |
decoder = decoder_class( | |
vocab_size=vocab_size, | |
**decoder_conf, | |
) | |
decoder_output_size = decoder.output_size | |
joint_network_class = tables.joint_network_classes.get(joint_network) | |
joint_network = joint_network_class( | |
vocab_size, | |
encoder_output_size, | |
decoder_output_size, | |
**joint_network_conf, | |
) | |
self.criterion_transducer = None | |
self.error_calculator = None | |
self.use_auxiliary_ctc = auxiliary_ctc_weight > 0 | |
self.use_auxiliary_lm_loss = auxiliary_lm_loss_weight > 0 | |
if self.use_auxiliary_ctc: | |
self.ctc_lin = torch.nn.Linear(encoder.output_size(), vocab_size) | |
self.ctc_dropout_rate = auxiliary_ctc_dropout_rate | |
if self.use_auxiliary_lm_loss: | |
self.lm_lin = torch.nn.Linear(decoder.output_size, vocab_size) | |
self.lm_loss_smoothing = auxiliary_lm_loss_smoothing | |
self.transducer_weight = transducer_weight | |
self.fastemit_lambda = fastemit_lambda | |
self.auxiliary_ctc_weight = auxiliary_ctc_weight | |
self.auxiliary_lm_loss_weight = auxiliary_lm_loss_weight | |
self.blank_id = blank_id | |
self.sos = sos if sos is not None else vocab_size - 1 | |
self.eos = eos if eos is not None else vocab_size - 1 | |
self.vocab_size = vocab_size | |
self.ignore_id = ignore_id | |
self.frontend = frontend | |
self.specaug = specaug | |
self.normalize = normalize | |
self.encoder = encoder | |
self.decoder = decoder | |
self.joint_network = joint_network | |
self.criterion_att = LabelSmoothingLoss( | |
size=vocab_size, | |
padding_idx=ignore_id, | |
smoothing=lsm_weight, | |
normalize_length=length_normalized_loss, | |
) | |
self.length_normalized_loss = length_normalized_loss | |
self.beam_search = None | |
self.ctc = None | |
self.ctc_weight = 0.0 | |
def forward( | |
self, | |
speech: torch.Tensor, | |
speech_lengths: torch.Tensor, | |
text: torch.Tensor, | |
text_lengths: torch.Tensor, | |
**kwargs, | |
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]: | |
"""Encoder + Decoder + Calc loss | |
Args: | |
speech: (Batch, Length, ...) | |
speech_lengths: (Batch, ) | |
text: (Batch, Length) | |
text_lengths: (Batch,) | |
""" | |
if len(text_lengths.size()) > 1: | |
text_lengths = text_lengths[:, 0] | |
if len(speech_lengths.size()) > 1: | |
speech_lengths = speech_lengths[:, 0] | |
batch_size = speech.shape[0] | |
# 1. Encoder | |
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) | |
if ( | |
hasattr(self.encoder, "overlap_chunk_cls") | |
and self.encoder.overlap_chunk_cls is not None | |
): | |
encoder_out, encoder_out_lens = self.encoder.overlap_chunk_cls.remove_chunk( | |
encoder_out, encoder_out_lens, chunk_outs=None | |
) | |
# 2. Transducer-related I/O preparation | |
decoder_in, target, t_len, u_len = get_transducer_task_io( | |
text, | |
encoder_out_lens, | |
ignore_id=self.ignore_id, | |
) | |
# 3. Decoder | |
self.decoder.set_device(encoder_out.device) | |
decoder_out = self.decoder(decoder_in, u_len) | |
# 4. Joint Network | |
joint_out = self.joint_network( | |
encoder_out.unsqueeze(2), decoder_out.unsqueeze(1) | |
) | |
# 5. Losses | |
loss_trans, cer_trans, wer_trans = self._calc_transducer_loss( | |
encoder_out, | |
joint_out, | |
target, | |
t_len, | |
u_len, | |
) | |
loss_ctc, loss_lm = 0.0, 0.0 | |
if self.use_auxiliary_ctc: | |
loss_ctc = self._calc_ctc_loss( | |
encoder_out, | |
target, | |
t_len, | |
u_len, | |
) | |
if self.use_auxiliary_lm_loss: | |
loss_lm = self._calc_lm_loss(decoder_out, target) | |
loss = ( | |
self.transducer_weight * loss_trans | |
+ self.auxiliary_ctc_weight * loss_ctc | |
+ self.auxiliary_lm_loss_weight * loss_lm | |
) | |
stats = dict( | |
loss=loss.detach(), | |
loss_transducer=loss_trans.detach(), | |
aux_ctc_loss=loss_ctc.detach() if loss_ctc > 0.0 else None, | |
aux_lm_loss=loss_lm.detach() if loss_lm > 0.0 else None, | |
cer_transducer=cer_trans, | |
wer_transducer=wer_trans, | |
) | |
# force_gatherable: to-device and to-tensor if scalar for DataParallel | |
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) | |
return loss, stats, weight | |
def encode( | |
self, | |
speech: torch.Tensor, | |
speech_lengths: torch.Tensor, | |
**kwargs, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
"""Frontend + Encoder. Note that this method is used by asr_inference.py | |
Args: | |
speech: (Batch, Length, ...) | |
speech_lengths: (Batch, ) | |
ind: int | |
""" | |
with autocast(False): | |
# Data augmentation | |
if self.specaug is not None and self.training: | |
speech, speech_lengths = self.specaug(speech, speech_lengths) | |
# Normalization for feature: e.g. Global-CMVN, Utterance-CMVN | |
if self.normalize is not None: | |
speech, speech_lengths = self.normalize(speech, speech_lengths) | |
# Forward encoder | |
# feats: (Batch, Length, Dim) | |
# -> encoder_out: (Batch, Length2, Dim2) | |
encoder_out, encoder_out_lens, _ = self.encoder(speech, speech_lengths) | |
intermediate_outs = None | |
if isinstance(encoder_out, tuple): | |
intermediate_outs = encoder_out[1] | |
encoder_out = encoder_out[0] | |
if intermediate_outs is not None: | |
return (encoder_out, intermediate_outs), encoder_out_lens | |
return encoder_out, encoder_out_lens | |
def _calc_transducer_loss( | |
self, | |
encoder_out: torch.Tensor, | |
joint_out: torch.Tensor, | |
target: torch.Tensor, | |
t_len: torch.Tensor, | |
u_len: torch.Tensor, | |
) -> Tuple[torch.Tensor, Optional[float], Optional[float]]: | |
"""Compute Transducer loss. | |
Args: | |
encoder_out: Encoder output sequences. (B, T, D_enc) | |
joint_out: Joint Network output sequences (B, T, U, D_joint) | |
target: Target label ID sequences. (B, L) | |
t_len: Encoder output sequences lengths. (B,) | |
u_len: Target label ID sequences lengths. (B,) | |
Return: | |
loss_transducer: Transducer loss value. | |
cer_transducer: Character error rate for Transducer. | |
wer_transducer: Word Error Rate for Transducer. | |
""" | |
if self.criterion_transducer is None: | |
try: | |
from warp_rnnt import rnnt_loss as RNNTLoss | |
self.criterion_transducer = RNNTLoss | |
except ImportError: | |
logging.error( | |
"warp-rnnt was not installed." | |
"Please consult the installation documentation." | |
) | |
exit(1) | |
log_probs = torch.log_softmax(joint_out, dim=-1) | |
loss_transducer = self.criterion_transducer( | |
log_probs, | |
target, | |
t_len, | |
u_len, | |
reduction="mean", | |
blank=self.blank_id, | |
fastemit_lambda=self.fastemit_lambda, | |
gather=True, | |
) | |
if not self.training and (self.report_cer or self.report_wer): | |
if self.error_calculator is None: | |
from funasr_detach.metrics import ( | |
ErrorCalculatorTransducer as ErrorCalculator, | |
) | |
self.error_calculator = ErrorCalculator( | |
self.decoder, | |
self.joint_network, | |
self.token_list, | |
self.sym_space, | |
self.sym_blank, | |
report_cer=self.report_cer, | |
report_wer=self.report_wer, | |
) | |
cer_transducer, wer_transducer = self.error_calculator( | |
encoder_out, target, t_len | |
) | |
return loss_transducer, cer_transducer, wer_transducer | |
return loss_transducer, None, None | |
def _calc_ctc_loss( | |
self, | |
encoder_out: torch.Tensor, | |
target: torch.Tensor, | |
t_len: torch.Tensor, | |
u_len: torch.Tensor, | |
) -> torch.Tensor: | |
"""Compute CTC loss. | |
Args: | |
encoder_out: Encoder output sequences. (B, T, D_enc) | |
target: Target label ID sequences. (B, L) | |
t_len: Encoder output sequences lengths. (B,) | |
u_len: Target label ID sequences lengths. (B,) | |
Return: | |
loss_ctc: CTC loss value. | |
""" | |
ctc_in = self.ctc_lin( | |
torch.nn.functional.dropout(encoder_out, p=self.ctc_dropout_rate) | |
) | |
ctc_in = torch.log_softmax(ctc_in.transpose(0, 1), dim=-1) | |
target_mask = target != 0 | |
ctc_target = target[target_mask].cpu() | |
with torch.backends.cudnn.flags(deterministic=True): | |
loss_ctc = torch.nn.functional.ctc_loss( | |
ctc_in, | |
ctc_target, | |
t_len, | |
u_len, | |
zero_infinity=True, | |
reduction="sum", | |
) | |
loss_ctc /= target.size(0) | |
return loss_ctc | |
def _calc_lm_loss( | |
self, | |
decoder_out: torch.Tensor, | |
target: torch.Tensor, | |
) -> torch.Tensor: | |
"""Compute LM loss. | |
Args: | |
decoder_out: Decoder output sequences. (B, U, D_dec) | |
target: Target label ID sequences. (B, L) | |
Return: | |
loss_lm: LM loss value. | |
""" | |
lm_loss_in = self.lm_lin(decoder_out[:, :-1, :]).view(-1, self.vocab_size) | |
lm_target = target.view(-1).type(torch.int64) | |
with torch.no_grad(): | |
true_dist = lm_loss_in.clone() | |
true_dist.fill_(self.lm_loss_smoothing / (self.vocab_size - 1)) | |
# Ignore blank ID (0) | |
ignore = lm_target == 0 | |
lm_target = lm_target.masked_fill(ignore, 0) | |
true_dist.scatter_(1, lm_target.unsqueeze(1), (1 - self.lm_loss_smoothing)) | |
loss_lm = torch.nn.functional.kl_div( | |
torch.log_softmax(lm_loss_in, dim=1), | |
true_dist, | |
reduction="none", | |
) | |
loss_lm = loss_lm.masked_fill(ignore.unsqueeze(1), 0).sum() / decoder_out.size( | |
0 | |
) | |
return loss_lm | |
def init_beam_search( | |
self, | |
**kwargs, | |
): | |
# 1. Build ASR model | |
scorers = {} | |
if self.ctc != None: | |
ctc = CTCPrefixScorer(ctc=self.ctc, eos=self.eos) | |
scorers.update(ctc=ctc) | |
token_list = kwargs.get("token_list") | |
scorers.update( | |
length_bonus=LengthBonus(len(token_list)), | |
) | |
# 3. Build ngram model | |
# ngram is not supported now | |
ngram = None | |
scorers["ngram"] = ngram | |
beam_search = BeamSearchTransducer( | |
self.decoder, | |
self.joint_network, | |
kwargs.get("beam_size", 2), | |
nbest=1, | |
) | |
# beam_search.to(device=kwargs.get("device", "cpu"), dtype=getattr(torch, kwargs.get("dtype", "float32"))).eval() | |
# for scorer in scorers.values(): | |
# if isinstance(scorer, torch.nn.Module): | |
# scorer.to(device=kwargs.get("device", "cpu"), dtype=getattr(torch, kwargs.get("dtype", "float32"))).eval() | |
self.beam_search = beam_search | |
def inference( | |
self, | |
data_in: list, | |
data_lengths: list = None, | |
key: list = None, | |
tokenizer=None, | |
**kwargs, | |
): | |
if kwargs.get("batch_size", 1) > 1: | |
raise NotImplementedError("batch decoding is not implemented") | |
# init beamsearch | |
is_use_ctc = ( | |
kwargs.get("decoding_ctc_weight", 0.0) > 0.00001 and self.ctc != None | |
) | |
is_use_lm = ( | |
kwargs.get("lm_weight", 0.0) > 0.00001 | |
and kwargs.get("lm_file", None) is not None | |
) | |
# if self.beam_search is None and (is_use_lm or is_use_ctc): | |
logging.info("enable beam_search") | |
self.init_beam_search(**kwargs) | |
self.nbest = kwargs.get("nbest", 1) | |
meta_data = {} | |
# extract fbank feats | |
time1 = time.perf_counter() | |
audio_sample_list = load_audio_text_image_video( | |
data_in, fs=self.frontend.fs, audio_fs=kwargs.get("fs", 16000) | |
) | |
time2 = time.perf_counter() | |
meta_data["load_data"] = f"{time2 - time1:0.3f}" | |
speech, speech_lengths = extract_fbank( | |
audio_sample_list, | |
data_type=kwargs.get("data_type", "sound"), | |
frontend=self.frontend, | |
) | |
time3 = time.perf_counter() | |
meta_data["extract_feat"] = f"{time3 - time2:0.3f}" | |
meta_data["batch_data_time"] = ( | |
speech_lengths.sum().item() | |
* self.frontend.frame_shift | |
* self.frontend.lfr_n | |
/ 1000 | |
) | |
speech = speech.to(device=kwargs["device"]) | |
speech_lengths = speech_lengths.to(device=kwargs["device"]) | |
# Encoder | |
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) | |
if isinstance(encoder_out, tuple): | |
encoder_out = encoder_out[0] | |
# c. Passed the encoder result and the beam search | |
nbest_hyps = self.beam_search(encoder_out[0], is_final=True) | |
nbest_hyps = nbest_hyps[: self.nbest] | |
results = [] | |
b, n, d = encoder_out.size() | |
for i in range(b): | |
for nbest_idx, hyp in enumerate(nbest_hyps): | |
ibest_writer = None | |
if kwargs.get("output_dir") is not None: | |
if not hasattr(self, "writer"): | |
self.writer = DatadirWriter(kwargs.get("output_dir")) | |
ibest_writer = self.writer[f"{nbest_idx + 1}best_recog"] | |
# remove sos/eos and get results | |
last_pos = -1 | |
if isinstance(hyp.yseq, list): | |
token_int = hyp.yseq # [1:last_pos] | |
else: | |
token_int = hyp.yseq # [1:last_pos].tolist() | |
# remove blank symbol id, which is assumed to be 0 | |
token_int = list( | |
filter( | |
lambda x: x != self.eos | |
and x != self.sos | |
and x != self.blank_id, | |
token_int, | |
) | |
) | |
# Change integer-ids to tokens | |
token = tokenizer.ids2tokens(token_int) | |
text = tokenizer.tokens2text(token) | |
text_postprocessed, _ = postprocess_utils.sentence_postprocess(token) | |
result_i = { | |
"key": key[i], | |
"token": token, | |
"text": text, | |
"text_postprocessed": text_postprocessed, | |
} | |
results.append(result_i) | |
if ibest_writer is not None: | |
ibest_writer["token"][key[i]] = " ".join(token) | |
ibest_writer["text"][key[i]] = text | |
ibest_writer["text_postprocessed"][key[i]] = text_postprocessed | |
return results, meta_data | |