mrfakename's picture
Super-squash branch 'main' using huggingface_hub
0102e16 verified
# Copyright 2019 Hitachi, Ltd. (author: Yusuke Fujita)
# Licensed under the MIT license.
#
# This module is for computing audio features
import librosa
import numpy as np
def transform(Y, dtype=np.float32):
Y = np.abs(Y)
n_fft = 2 * (Y.shape[1] - 1)
sr = 8000
n_mels = 23
mel_basis = librosa.filters.mel(sr, n_fft, n_mels)
Y = np.dot(Y**2, mel_basis.T)
Y = np.log10(np.maximum(Y, 1e-10))
mean = np.mean(Y, axis=0)
Y = Y - mean
return Y.astype(dtype)
def subsample(Y, T, subsampling=1):
Y_ss = Y[::subsampling]
T_ss = T[::subsampling]
return Y_ss, T_ss
def splice(Y, context_size=0):
Y_pad = np.pad(Y, [(context_size, context_size), (0, 0)], "constant")
Y_spliced = np.lib.stride_tricks.as_strided(
np.ascontiguousarray(Y_pad),
(Y.shape[0], Y.shape[1] * (2 * context_size + 1)),
(Y.itemsize * Y.shape[1], Y.itemsize),
writeable=False,
)
return Y_spliced
def stft(data, frame_size=1024, frame_shift=256):
fft_size = 1 << (frame_size - 1).bit_length()
if len(data) % frame_shift == 0:
return librosa.stft(
data, n_fft=fft_size, win_length=frame_size, hop_length=frame_shift
).T[:-1]
else:
return librosa.stft(
data, n_fft=fft_size, win_length=frame_size, hop_length=frame_shift
).T