Spaces:
Runtime error
Runtime error
# Copyright (c) 2025 SparkAudio | |
# 2025 Xinsheng Wang (w.xinshawn@gmail.com) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Heavily based on https://github.com/lucidrains/vector-quantize-pytorch | |
from typing import Any, Dict | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import rearrange | |
from torch.nn.utils import weight_norm | |
def WNConv1d(*args, **kwargs): | |
return weight_norm(nn.Conv1d(*args, **kwargs)) | |
def ema_inplace(moving_avg, new, decay): | |
moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay)) | |
class FactorizedVectorQuantize(nn.Module): | |
def __init__( | |
self, | |
input_dim: int, | |
codebook_size: int, | |
codebook_dim: int, | |
commitment: float, | |
codebook_loss_weight: float = 1.0, | |
decay: float = 0.99, | |
threshold_ema_dead_code: float = 2, | |
momentum: float = 0.99, | |
**kwargs, | |
): | |
super().__init__() | |
self.input_dim = input_dim | |
self.codebook_size = codebook_size | |
self.codebook_dim = codebook_dim | |
self.commitment = commitment | |
self.codebook_loss_weight = codebook_loss_weight | |
self.decay = decay | |
self.threshold_ema_dead_code = threshold_ema_dead_code | |
self.momentum = momentum | |
if input_dim != self.codebook_dim: | |
self.in_project = WNConv1d(input_dim, self.codebook_dim, kernel_size=1) | |
self.out_project = WNConv1d(self.codebook_dim, input_dim, kernel_size=1) | |
else: | |
self.in_project = nn.Identity() | |
self.out_project = nn.Identity() | |
self.codebook = nn.Embedding(self.codebook_size, self.codebook_dim) | |
self.register_buffer("cluster_size", torch.zeros(self.codebook_size)) | |
def forward(self, z: torch.Tensor) -> Dict[str, Any]: | |
"""Quantized the input tensor using a fixed codebook and returns | |
the corresponding codebook vectors | |
Parameters | |
---------- | |
z : Tensor[B x D x T] | |
Returns | |
------- | |
Tensor[B x D x T] | |
Quantized continuous representation of input | |
Tensor[1] | |
Commitment loss to train encoder to predict vectors closer to codebook | |
entries | |
Tensor[1] | |
Codebook loss to update the codebook | |
Tensor[B x T] | |
Codebook indices (quantized discrete representation of input) | |
Tensor[B x D x T] | |
Projected latents (continuous representation of input before quantization) | |
""" | |
# transpose since we use linear | |
# Factorized codes project input into low-dimensional space if self.input_dim != self.codebook_dim | |
z_e = self.in_project(z) | |
z_q, indices, dists = self.decode_latents(z_e) | |
# statistic the usage of codes | |
embed_onehot = F.one_hot(indices, self.codebook_size).type(z_e.dtype) | |
avg_probs = torch.mean(embed_onehot.reshape(-1, self.codebook_size), dim=0) | |
perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10))) | |
active_num = (embed_onehot.sum(0).sum(0) > 0).sum() | |
if self.training: | |
# We do the expiry of code at that point as buffers are in sync | |
# and all the workers will take the same decision. | |
ema_inplace(self.cluster_size, embed_onehot.sum(0).sum(0), self.decay) | |
active_num = sum(self.cluster_size > self.threshold_ema_dead_code) | |
if self.training: | |
commit_loss = ( | |
F.mse_loss(z_e, z_q.detach(), reduction="none").mean([1, 2]) | |
* self.commitment | |
) | |
codebook_loss = ( | |
F.mse_loss(z_q, z_e.detach(), reduction="none").mean([1, 2]) | |
* self.codebook_loss_weight | |
) | |
else: | |
commit_loss = torch.zeros(0, device=z.device) | |
codebook_loss = torch.zeros(0, device=z.device) | |
z_q = ( | |
z_e + (z_q - z_e).detach() | |
) # noop in forward pass, straight-through gradient estimator in backward pass | |
z_q = self.out_project(z_q) | |
vq_loss = (commit_loss + codebook_loss).mean() | |
return { | |
"z_q": z_q, | |
"indices": indices, | |
"dists": dists, | |
"vq_loss": vq_loss, | |
"perplexity": perplexity, | |
"active_num": active_num.float(), | |
} | |
def vq2emb(self, vq, out_proj=True): | |
emb = self.embed_code(vq) | |
if out_proj: | |
emb = self.out_project(emb) | |
return emb | |
def tokenize(self, z: torch.Tensor) -> torch.Tensor: | |
"""tokenize the input tensor""" | |
z_e = self.in_project(z) | |
_, indices, _ = self.decode_latents(z_e) | |
return indices | |
def detokenize(self, indices): | |
"""detokenize the input indices""" | |
z_q = self.decode_code(indices) | |
z_q = self.out_project(z_q) | |
return z_q | |
def get_emb(self): | |
return self.codebook.weight | |
def embed_code(self, embed_id): | |
return F.embedding(embed_id, self.codebook.weight) | |
def decode_code(self, embed_id): | |
return self.embed_code(embed_id).transpose(1, 2) | |
def decode_latents(self, latents): | |
encodings = rearrange(latents, "b d t -> (b t) d") | |
codebook = self.codebook.weight | |
# L2 normalize encodings and codebook | |
encodings = F.normalize(encodings) | |
codebook = F.normalize(codebook) | |
# Compute euclidean distance between encodings and codebook, | |
# with L2 normalization, the distance is equal to cosine distance | |
dist = ( | |
encodings.pow(2).sum(1, keepdim=True) | |
- 2 * encodings @ codebook.t() | |
+ codebook.pow(2).sum(1, keepdim=True).t() | |
) | |
indices = rearrange((-dist).max(1)[1], "(b t) -> b t", b=latents.size(0)) | |
z_q = self.decode_code(indices) | |
return z_q, indices, dist | |