Spaces:
Running
Running
import gradio as gr | |
import torch | |
from PIL import Image, ImageDraw, ImageFont | |
from transformers import AutoImageProcessor | |
from transformers import AutoModelForObjectDetection | |
# Note: Can load from Hugging Face or can load from local. | |
# You will have to replace {mrdbourke} for your own username if the model is on your Hugging Face account. | |
model_save_path = "mrdbourke/detr_finetuned_trashify_box_detector_with_data_aug" | |
# Load the model and preprocessor | |
image_processor = AutoImageProcessor.from_pretrained(model_save_path) | |
model = AutoModelForObjectDetection.from_pretrained(model_save_path) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model = model.to(device) | |
# Get the id2label dictionary from the model | |
id2label = model.config.id2label | |
# Set up a colour dictionary for plotting boxes with different colours | |
color_dict = { | |
"bin": "green", | |
"trash": "blue", | |
"hand": "purple", | |
"trash_arm": "yellow", | |
"not_trash": "red", | |
"not_bin": "red", | |
"not_hand": "red", | |
} | |
# Create helper functions for seeing if items from one list are in another | |
def any_in_list(list_a, list_b): | |
"Returns True if any item from list_a is in list_b, otherwise False." | |
return any(item in list_b for item in list_a) | |
def all_in_list(list_a, list_b): | |
"Returns True if all items from list_a are in list_b, otherwise False." | |
return all(item in list_b for item in list_a) | |
def filter_highest_scoring_box_per_class(boxes, labels, scores): | |
""" | |
Perform NMS (Non-max Supression) to only keep the top scoring box per class. | |
Args: | |
boxes: tensor of shape (N, 4) | |
labels: tensor of shape (N,) | |
scores: tensor of shape (N,) | |
Returns: | |
boxes: tensor of shape (N, 4) filtered for max scoring item per class | |
labels: tensor of shape (N,) filtered for max scoring item per class | |
scores: tensor of shape (N,) filtered for max scoring item per class | |
""" | |
# Start with a blank keep mask (e.g. all False and then update the boxes to keep with True) | |
keep_mask = torch.zeros(len(boxes), dtype=torch.bool) | |
# For each unique class | |
for class_id in labels.unique(): | |
# Get the indicies for the target class | |
class_mask = labels == class_id | |
# If any of the labels match the current class_id | |
if class_mask.any(): | |
# Find the index of highest scoring box for this specific class | |
class_scores = scores[class_mask] | |
highest_score_idx = class_scores.argmax() | |
# Convert back to the original index | |
original_idx = torch.where(class_mask)[0][highest_score_idx] | |
# Update the index in the keep mask to keep the highest scoring box | |
keep_mask[original_idx] = True | |
return boxes[keep_mask], labels[keep_mask], scores[keep_mask] | |
def create_return_string(list_of_predicted_labels, target_items=["trash", "bin", "hand"]): | |
# Setup blank string to print out | |
return_string = "" | |
# If no items detected or trash, bin, hand not in list, return notification | |
if (len(list_of_predicted_labels) == 0) or not (any_in_list(list_a=target_items, list_b=list_of_predicted_labels)): | |
return_string = f"No trash, bin or hand detected at confidence threshold {conf_threshold}. Try another image or lowering the confidence threshold." | |
return return_string | |
# If there are some missing, print the ones which are missing | |
elif not all_in_list(list_a=target_items, list_b=list_of_predicted_labels): | |
missing_items = [] | |
for item in target_items: | |
if item not in list_of_predicted_labels: | |
missing_items.append(item) | |
return_string = f"Detected the following items: {list_of_predicted_labels} (total: {len(list_of_predicted_labels)}). But missing the following in order to get +1: {missing_items}. If this is an error, try another image or altering the confidence threshold. Otherwise, the model may need to be updated with better data." | |
# If all 3 trash, bin, hand occur = + 1 | |
if all_in_list(list_a=target_items, list_b=list_of_predicted_labels): | |
return_string = f"+1! Found the following items: {list_of_predicted_labels} (total: {len(list_of_predicted_labels)}), thank you for cleaning up the area!" | |
print(return_string) | |
return return_string | |
def predict_on_image(image, conf_threshold): | |
with torch.no_grad(): | |
inputs = image_processor(images=[image], return_tensors="pt") | |
outputs = model(**inputs.to(device)) | |
target_sizes = torch.tensor([[image.size[1], image.size[0]]]) # height, width | |
results = image_processor.post_process_object_detection(outputs, | |
threshold=conf_threshold, | |
target_sizes=target_sizes)[0] | |
# Return all items in results to CPU | |
for key, value in results.items(): | |
try: | |
results[key] = value.item().cpu() # can't get scalar as .item() so add try/except block | |
except: | |
results[key] = value.cpu() | |
# Can return results as plotted on a PIL image (then display the image) | |
draw = ImageDraw.Draw(image) | |
# Create a copy of the image to draw on it for NMS | |
image_nms = image.copy() | |
draw_nms = ImageDraw.Draw(image_nms) | |
# Get a font from ImageFont | |
font = ImageFont.load_default(size=20) | |
# Get class names as text for print out | |
class_name_text_labels = [] | |
# TK - update this for NMS | |
class_name_text_labels_nms = [] | |
# Get original boxes, scores, labels | |
original_boxes = results["boxes"] | |
original_labels = results["labels"] | |
original_scores = results["scores"] | |
# Filter boxes and only keep 1x of each label with highest score | |
filtered_boxes, filtered_labels, filtered_scores = filter_highest_scoring_box_per_class(boxes=original_boxes, | |
labels=original_labels, | |
scores=original_scores) | |
# TODO: turn this into a function so it's cleaner? | |
for box, label, score in zip(original_boxes, original_labels, original_scores): | |
# Create coordinates | |
x, y, x2, y2 = tuple(box.tolist()) | |
# Get label_name | |
label_name = id2label[label.item()] | |
targ_color = color_dict[label_name] | |
class_name_text_labels.append(label_name) | |
# Draw the rectangle | |
draw.rectangle(xy=(x, y, x2, y2), | |
outline=targ_color, | |
width=3) | |
# Create a text string to display | |
text_string_to_show = f"{label_name} ({round(score.item(), 3)})" | |
# Draw the text on the image | |
draw.text(xy=(x, y), | |
text=text_string_to_show, | |
fill="white", | |
font=font) | |
# TODO: turn this into a function so it's cleaner? | |
for box, label, score in zip(filtered_boxes, filtered_labels, filtered_scores): | |
# Create coordinates | |
x, y, x2, y2 = tuple(box.tolist()) | |
# Get label_name | |
label_name = id2label[label.item()] | |
targ_color = color_dict[label_name] | |
class_name_text_labels_nms.append(label_name) | |
# Draw the rectangle | |
draw_nms.rectangle(xy=(x, y, x2, y2), | |
outline=targ_color, | |
width=3) | |
# Create a text string to display | |
text_string_to_show = f"{label_name} ({round(score.item(), 3)})" | |
# Draw the text on the image | |
draw_nms.text(xy=(x, y), | |
text=text_string_to_show, | |
fill="white", | |
font=font) | |
# Remove the draw each time | |
del draw | |
del draw_nms | |
# Create the return string | |
return_string = create_return_string(list_of_predicted_labels=class_name_text_labels) | |
return_string_nms = create_return_string(list_of_predicted_labels=class_name_text_labels_nms) | |
return image, return_string, image_nms, return_string_nms | |
# Create the interface | |
demo = gr.Interface( | |
fn=predict_on_image, | |
inputs=[ | |
gr.Image(type="pil", label="Target Image"), | |
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence Threshold") | |
], | |
outputs=[ | |
gr.Image(type="pil", label="Image Output (no filtering)"), | |
gr.Text(label="Text Output (no filtering)"), | |
gr.Image(type="pil", label="Image Output (with max score per class box filtering)"), | |
gr.Text(label="Text Output (with max score per class box filtering)") | |
], | |
title="🚮 Trashify Object Detection Demo V3", | |
description="""Help clean up your local area! Upload an image and get +1 if there is all of the following items detected: trash, bin, hand. | |
The model in V3 is [same model](https://huggingface.co/mrdbourke/detr_finetuned_trashify_box_detector_with_data_aug) as in [V2](https://huggingface.co/spaces/mrdbourke/trashify_demo_v2) (trained with data augmentation) but has an additional post-processing step (NMS or [Non Maximum Suppression](https://paperswithcode.com/method/non-maximum-suppression)) to filter classes for only the highest scoring box of each class. | |
""", | |
# Examples come in the form of a list of lists, where each inner list contains elements to prefill the `inputs` parameter with | |
examples=[ | |
["examples/trashify_example_1.jpeg", 0.25], | |
["examples/trashify_example_2.jpeg", 0.25], | |
["examples/trashify_example_3.jpeg", 0.25] | |
], | |
cache_examples=True | |
) | |
# Launch the demo | |
demo.launch() | |