import torch | |
import torchvision | |
from torch import nn | |
def create_effnetb2_model(num_classes:int=3, # default output classes = 3 (pizza, steak, sushi) | |
seed:int=42): | |
# 1, 2, 3 Create EffNetB2 pretrained weights, transforms and model | |
weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT | |
transforms = weights.transforms() | |
model = torchvision.models.efficientnet_b2(weights=weights) | |
# 4. Freeze all layers in the base model | |
for param in model.parameters(): | |
param.requires_grad = False | |
# 5. Change classifier head with random seed for reproducibility | |
torch.manual_seed(seed) | |
model.classifier = nn.Sequential( | |
nn.Dropout(p=0.3, inplace=True), | |
nn.Linear(in_features=1408, out_features=num_classes) | |
) | |
return model, transforms | |