mrdbourke commited on
Commit
f4aacbc
Β·
1 Parent(s): cf6f84f

initial commit

Browse files
09_pretrained_effnetb2_feature_extractor_food101_20_percent.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b17e6a96bd4b62bf806ca8d41c3d47063079079201c7607b2d71ce672b3da321
3
+ size 31825353
app.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+
4
+ from model import create_effnetb2_model
5
+ from timeit import default_timer as timer
6
+
7
+ # TK - load in FoodVision Big class names
8
+ # Setup class names
9
+ with open(foodvision_big_class_names_path, "r") as f:
10
+ class_names = [food_name.strip() for food_name in f.readlines()]
11
+
12
+ # Create model
13
+ model, transforms = create_effnetb2_model(
14
+ num_classes=101,
15
+ )
16
+
17
+ # Load saved weights
18
+ model.load_state_dict(
19
+ torch.load(
20
+ f= foodvision_big_demo_path / "09_pretrained_effnetb2_feature_extractor_food101_20_percent.pth",
21
+ map_location=torch.device("cpu"), # load to CPU
22
+ )
23
+ )
24
+
25
+ # Create prediction code
26
+ def predict(img):
27
+ start_time = timer()
28
+ img = transforms(img).unsqueeze(0)
29
+ model.eval()
30
+ with torch.inference_mode():
31
+ pred_probs = torch.softmax(model(img), dim=1)
32
+ pred_labels_and_probs = {
33
+ class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))
34
+ }
35
+ pred_time = round(timer() - start_time, 5)
36
+ return pred_labels_and_probs, pred_time
37
+
38
+
39
+ # Create Gradio app
40
+ title = "FoodVision Big πŸ”πŸ‘"
41
+ description = "An EfficientNetB2 feature extractor computer vision model to classify images of food into 101 different classes."
42
+ article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)."
43
+ example_dir = "demos/foodvision_big/examples"
44
+
45
+ demo = gr.Interface(
46
+ fn=predict,
47
+ inputs=gr.Image(type="pil"),
48
+ outputs=[
49
+ gr.Label(num_top_classes=5, label="Predictions"),
50
+ gr.Number(label="Prediction time (s)"),
51
+ ],
52
+ # examples="demo/foodvision_mini/examples",
53
+ interpretation="default",
54
+ title=title,
55
+ description=description,
56
+ article=article,
57
+ )
58
+
59
+ demo.launch()
class_names.txt ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ apple_pie
2
+ baby_back_ribs
3
+ baklava
4
+ beef_carpaccio
5
+ beef_tartare
6
+ beet_salad
7
+ beignets
8
+ bibimbap
9
+ bread_pudding
10
+ breakfast_burrito
11
+ bruschetta
12
+ caesar_salad
13
+ cannoli
14
+ caprese_salad
15
+ carrot_cake
16
+ ceviche
17
+ cheese_plate
18
+ cheesecake
19
+ chicken_curry
20
+ chicken_quesadilla
21
+ chicken_wings
22
+ chocolate_cake
23
+ chocolate_mousse
24
+ churros
25
+ clam_chowder
26
+ club_sandwich
27
+ crab_cakes
28
+ creme_brulee
29
+ croque_madame
30
+ cup_cakes
31
+ deviled_eggs
32
+ donuts
33
+ dumplings
34
+ edamame
35
+ eggs_benedict
36
+ escargots
37
+ falafel
38
+ filet_mignon
39
+ fish_and_chips
40
+ foie_gras
41
+ french_fries
42
+ french_onion_soup
43
+ french_toast
44
+ fried_calamari
45
+ fried_rice
46
+ frozen_yogurt
47
+ garlic_bread
48
+ gnocchi
49
+ greek_salad
50
+ grilled_cheese_sandwich
51
+ grilled_salmon
52
+ guacamole
53
+ gyoza
54
+ hamburger
55
+ hot_and_sour_soup
56
+ hot_dog
57
+ huevos_rancheros
58
+ hummus
59
+ ice_cream
60
+ lasagna
61
+ lobster_bisque
62
+ lobster_roll_sandwich
63
+ macaroni_and_cheese
64
+ macarons
65
+ miso_soup
66
+ mussels
67
+ nachos
68
+ omelette
69
+ onion_rings
70
+ oysters
71
+ pad_thai
72
+ paella
73
+ pancakes
74
+ panna_cotta
75
+ peking_duck
76
+ pho
77
+ pizza
78
+ pork_chop
79
+ poutine
80
+ prime_rib
81
+ pulled_pork_sandwich
82
+ ramen
83
+ ravioli
84
+ red_velvet_cake
85
+ risotto
86
+ samosa
87
+ sashimi
88
+ scallops
89
+ seaweed_salad
90
+ shrimp_and_grits
91
+ spaghetti_bolognese
92
+ spaghetti_carbonara
93
+ spring_rolls
94
+ steak
95
+ strawberry_shortcake
96
+ sushi
97
+ tacos
98
+ takoyaki
99
+ tiramisu
100
+ tuna_tartare
101
+ waffles
model.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torchvision
2
+
3
+ from torch import nn
4
+
5
+
6
+ def create_effnetb2_model(num_classes: int):
7
+ weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
8
+ transforms = weights.transforms()
9
+ model = torchvision.models.efficientnet_b2(weights=weights)
10
+
11
+ # Freeze base model
12
+ for param in model.parameters():
13
+ param.requires_grad = False
14
+
15
+ # Change classifier head
16
+ model.classifier = nn.Sequential(
17
+ nn.Dropout(p=0.3, inplace=True),
18
+ nn.Linear(in_features=1408, out_features=num_classes),
19
+ )
20
+ return model, transforms
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ torch==1.12.0
2
+ torchvision==0.13.0
3
+ gradio==3.1.4