mrdbourke commited on
Commit
802aea5
Β·
1 Parent(s): ec3bf01

update files

Browse files
.gitattributes CHANGED
@@ -29,3 +29,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
29
  *.zip filter=lfs diff=lfs merge=lfs -text
30
  *.zst filter=lfs diff=lfs merge=lfs -text
31
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
29
  *.zip filter=lfs diff=lfs merge=lfs -text
30
  *.zst filter=lfs diff=lfs merge=lfs -text
31
  *tfevents* filter=lfs diff=lfs merge=lfs -text
32
+ 09_pretrained_effnetb2_feature_extractor_food101_20_percent.pth filter=lfs diff=lfs merge=lfs -text
33
+ */*.jpg filter=lfs diff=lfs merge=lfs -text
34
+ examples/04-pizza-dad.jpg filter=lfs diff=lfs merge=lfs -text
09_pretrained_effnetb2_feature_extractor_food101_20_percent.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b17e6a96bd4b62bf806ca8d41c3d47063079079201c7607b2d71ce672b3da321
3
  size 31825353
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c834646453534d566a227d53c28ec4a6fc7a956b546c77c3e13f305de7f8e5d
3
  size 31825353
app.py CHANGED
@@ -1,16 +1,21 @@
 
1
  import gradio as gr
 
2
  import torch
3
 
4
  from model import create_effnetb2_model
5
  from timeit import default_timer as timer
 
6
 
7
  # Setup class names
8
- with open("class_names.txt", "r") as f:
9
  class_names = [food_name.strip() for food_name in f.readlines()]
 
 
10
 
11
  # Create model
12
  model, transforms = create_effnetb2_model(
13
- num_classes=101,
14
  )
15
 
16
  # Load saved weights
@@ -21,26 +26,44 @@ model.load_state_dict(
21
  )
22
  )
23
 
24
- # Create prediction code
25
- def predict(img):
 
 
 
 
 
26
  start_time = timer()
27
- img = transforms(img).unsqueeze(0)
28
- model.eval()
 
 
 
 
29
  with torch.inference_mode():
30
- pred_probs = torch.softmax(model(img), dim=1)
31
- pred_labels_and_probs = {
32
- class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))
33
- }
 
 
 
34
  pred_time = round(timer() - start_time, 5)
 
 
35
  return pred_labels_and_probs, pred_time
36
 
 
37
 
38
- # Create Gradio app
39
  title = "FoodVision Big πŸ”πŸ‘"
40
- description = "An EfficientNetB2 feature extractor computer vision model to classify images of food into 101 different classes."
41
  article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)."
42
- example_dir = "demos/foodvision_big/examples"
43
 
 
 
 
 
44
  demo = gr.Interface(
45
  fn=predict,
46
  inputs=gr.Image(type="pil"),
@@ -48,11 +71,11 @@ demo = gr.Interface(
48
  gr.Label(num_top_classes=5, label="Predictions"),
49
  gr.Number(label="Prediction time (s)"),
50
  ],
51
- # examples="demo/foodvision_mini/examples",
52
- interpretation="default",
53
  title=title,
54
  description=description,
55
  article=article,
56
  )
57
 
58
- demo.launch()
 
 
1
+ ### 1. Imports and class names setup ###
2
  import gradio as gr
3
+ import os
4
  import torch
5
 
6
  from model import create_effnetb2_model
7
  from timeit import default_timer as timer
8
+ from typing import Tuple, Dict
9
 
10
  # Setup class names
11
+ with open("class_names.txt", "r") as f: # reading them in from class_names.txt
12
  class_names = [food_name.strip() for food_name in f.readlines()]
13
+
14
+ ### 2. Model and transforms preparation ###
15
 
16
  # Create model
17
  model, transforms = create_effnetb2_model(
18
+ num_classes=101, # could also use len(class_names)
19
  )
20
 
21
  # Load saved weights
 
26
  )
27
  )
28
 
29
+ ### 3. Predict function ###
30
+
31
+ # Create predict function
32
+ def predict(img) -> Tuple[Dict, float]:
33
+ """Transforms and performs a prediction on img and returns prediction and time taken.
34
+ """
35
+ # Start the timer
36
  start_time = timer()
37
+
38
+ # Transform the target image and add a batch dimension
39
+ img = effnetb2_transforms(img).unsqueeze(0)
40
+
41
+ # Put model into evaluation mode and turn on inference mode
42
+ effnetb2.eval()
43
  with torch.inference_mode():
44
+ # Pass the transformed image through the model and turn the prediction logits into prediction probabilities
45
+ pred_probs = torch.softmax(effnetb2(img), dim=1)
46
+
47
+ # Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
48
+ pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
49
+
50
+ # Calculate the prediction time
51
  pred_time = round(timer() - start_time, 5)
52
+
53
+ # Return the prediction dictionary and prediction time
54
  return pred_labels_and_probs, pred_time
55
 
56
+ ### 4. Gradio app ###
57
 
58
+ # Create title, description and article strings
59
  title = "FoodVision Big πŸ”πŸ‘"
60
+ description = "An EfficientNetB2 feature extractor computer vision model to classify images of food into [101 different classes](https://github.com/mrdbourke/pytorch-deep-learning/blob/main/extras/food101_class_names.txt)."
61
  article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)."
 
62
 
63
+ # Create examples list from "examples/" directory
64
+ example_list = [["examples/" + example] for example in os.listdir("examples")]
65
+
66
+ # Create Gradio interface
67
  demo = gr.Interface(
68
  fn=predict,
69
  inputs=gr.Image(type="pil"),
 
71
  gr.Label(num_top_classes=5, label="Predictions"),
72
  gr.Number(label="Prediction time (s)"),
73
  ],
74
+ examples=example_list,
 
75
  title=title,
76
  description=description,
77
  article=article,
78
  )
79
 
80
+ # Launch the app!
81
+ demo.launch()
examples/04-pizza-dad.jpg ADDED

Git LFS Details

  • SHA256: 0f00389758009e8430ca17c9a21ebb4564c6945e0c91c58cf058e6a93d267dc8
  • Pointer size: 132 Bytes
  • Size of remote file: 2.87 MB
model.py CHANGED
@@ -1,20 +1,36 @@
 
1
  import torchvision
2
 
3
  from torch import nn
4
 
5
 
6
- def create_effnetb2_model(num_classes: int):
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
8
  transforms = weights.transforms()
9
  model = torchvision.models.efficientnet_b2(weights=weights)
10
 
11
- # Freeze base model
12
  for param in model.parameters():
13
  param.requires_grad = False
14
 
15
- # Change classifier head
 
16
  model.classifier = nn.Sequential(
17
  nn.Dropout(p=0.3, inplace=True),
18
  nn.Linear(in_features=1408, out_features=num_classes),
19
  )
20
- return model, transforms
 
 
1
+ import torch
2
  import torchvision
3
 
4
  from torch import nn
5
 
6
 
7
+ def create_effnetb2_model(num_classes:int=3,
8
+ seed:int=42):
9
+ """Creates an EfficientNetB2 feature extractor model and transforms.
10
+
11
+ Args:
12
+ num_classes (int, optional): number of classes in the classifier head.
13
+ Defaults to 3.
14
+ seed (int, optional): random seed value. Defaults to 42.
15
+
16
+ Returns:
17
+ model (torch.nn.Module): EffNetB2 feature extractor model.
18
+ transforms (torchvision.transforms): EffNetB2 image transforms.
19
+ """
20
+ # Create EffNetB2 pretrained weights, transforms and model
21
  weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
22
  transforms = weights.transforms()
23
  model = torchvision.models.efficientnet_b2(weights=weights)
24
 
25
+ # Freeze all layers in base model
26
  for param in model.parameters():
27
  param.requires_grad = False
28
 
29
+ # Change classifier head with random seed for reproducibility
30
+ torch.manual_seed(seed)
31
  model.classifier = nn.Sequential(
32
  nn.Dropout(p=0.3, inplace=True),
33
  nn.Linear(in_features=1408, out_features=num_classes),
34
  )
35
+
36
+ return model, transforms
requirements.txt CHANGED
@@ -1,3 +1,3 @@
1
  torch==1.12.0
2
  torchvision==0.13.0
3
- gradio==3.1.4
 
1
  torch==1.12.0
2
  torchvision==0.13.0
3
+ gradio==3.1.4