Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
import tempfile
|
4 |
+
import time
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
import numpy as np
|
8 |
+
import rembg
|
9 |
+
import torch
|
10 |
+
from PIL import Image
|
11 |
+
from functools import partial
|
12 |
+
|
13 |
+
from tsr.system import TSR
|
14 |
+
from tsr.utils import remove_background, resize_foreground, to_gradio_3d_orientation
|
15 |
+
|
16 |
+
import argparse
|
17 |
+
|
18 |
+
|
19 |
+
if torch.cuda.is_available():
|
20 |
+
device = "cuda:0"
|
21 |
+
else:
|
22 |
+
device = "cpu"
|
23 |
+
|
24 |
+
model = TSR.from_pretrained(
|
25 |
+
"stabilityai/TripoSR",
|
26 |
+
config_name="config.yaml",
|
27 |
+
weight_name="model.ckpt",
|
28 |
+
)
|
29 |
+
|
30 |
+
# adjust the chunk size to balance between speed and memory usage
|
31 |
+
model.renderer.set_chunk_size(8192)
|
32 |
+
model.to(device)
|
33 |
+
|
34 |
+
rembg_session = rembg.new_session()
|
35 |
+
|
36 |
+
|
37 |
+
def check_input_image(input_image):
|
38 |
+
if input_image is None:
|
39 |
+
raise gr.Error("No image uploaded!")
|
40 |
+
|
41 |
+
|
42 |
+
def preprocess(input_image, do_remove_background, foreground_ratio):
|
43 |
+
def fill_background(image):
|
44 |
+
image = np.array(image).astype(np.float32) / 255.0
|
45 |
+
image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
|
46 |
+
image = Image.fromarray((image * 255.0).astype(np.uint8))
|
47 |
+
return image
|
48 |
+
|
49 |
+
if do_remove_background:
|
50 |
+
image = input_image.convert("RGB")
|
51 |
+
image = remove_background(image, rembg_session)
|
52 |
+
image = resize_foreground(image, foreground_ratio)
|
53 |
+
image = fill_background(image)
|
54 |
+
else:
|
55 |
+
image = input_image
|
56 |
+
if image.mode == "RGBA":
|
57 |
+
image = fill_background(image)
|
58 |
+
return image
|
59 |
+
|
60 |
+
|
61 |
+
def generate(image, mc_resolution, formats=["obj", "glb"]):
|
62 |
+
scene_codes = model(image, device=device)
|
63 |
+
mesh = model.extract_mesh(scene_codes, resolution=mc_resolution)[0]
|
64 |
+
mesh = to_gradio_3d_orientation(mesh)
|
65 |
+
rv = []
|
66 |
+
for format in formats:
|
67 |
+
mesh_path = tempfile.NamedTemporaryFile(suffix=f".{format}", delete=False)
|
68 |
+
mesh.export(mesh_path.name)
|
69 |
+
rv.append(mesh_path.name)
|
70 |
+
return rv
|
71 |
+
|
72 |
+
|
73 |
+
def run_example(image_pil):
|
74 |
+
preprocessed = preprocess(image_pil, False, 0.9)
|
75 |
+
mesh_name_obj, mesh_name_glb = generate(preprocessed, 256, ["obj", "glb"])
|
76 |
+
return preprocessed, mesh_name_obj, mesh_name_glb
|
77 |
+
|
78 |
+
|
79 |
+
with gr.Blocks(title="TripoSR") as interface:
|
80 |
+
gr.Markdown(
|
81 |
+
"""
|
82 |
+
# TripoSR Demo
|
83 |
+
[TripoSR](https://github.com/VAST-AI-Research/TripoSR) is a state-of-the-art open-source model for **fast** feedforward 3D reconstruction from a single image, collaboratively developed by [Tripo AI](https://www.tripo3d.ai/) and [Stability AI](https://stability.ai/).
|
84 |
+
|
85 |
+
**Tips:**
|
86 |
+
1. If you find the result is unsatisfied, please try to change the foreground ratio. It might improve the results.
|
87 |
+
2. You can disable "Remove Background" for the provided examples since they have been already preprocessed.
|
88 |
+
3. Otherwise, please disable "Remove Background" option only if your input image is RGBA with transparent background, image contents are centered and occupy more than 70% of image width or height.
|
89 |
+
"""
|
90 |
+
)
|
91 |
+
with gr.Row(variant="panel"):
|
92 |
+
with gr.Column():
|
93 |
+
with gr.Row():
|
94 |
+
input_image = gr.Image(
|
95 |
+
label="Input Image",
|
96 |
+
image_mode="RGBA",
|
97 |
+
sources="upload",
|
98 |
+
type="pil",
|
99 |
+
elem_id="content_image",
|
100 |
+
)
|
101 |
+
processed_image = gr.Image(label="Processed Image", interactive=False)
|
102 |
+
with gr.Row():
|
103 |
+
with gr.Group():
|
104 |
+
do_remove_background = gr.Checkbox(
|
105 |
+
label="Remove Background", value=True
|
106 |
+
)
|
107 |
+
foreground_ratio = gr.Slider(
|
108 |
+
label="Foreground Ratio",
|
109 |
+
minimum=0.5,
|
110 |
+
maximum=1.0,
|
111 |
+
value=0.85,
|
112 |
+
step=0.05,
|
113 |
+
)
|
114 |
+
mc_resolution = gr.Slider(
|
115 |
+
label="Marching Cubes Resolution",
|
116 |
+
minimum=32,
|
117 |
+
maximum=320,
|
118 |
+
value=256,
|
119 |
+
step=32
|
120 |
+
)
|
121 |
+
with gr.Row():
|
122 |
+
submit = gr.Button("Generate", elem_id="generate", variant="primary")
|
123 |
+
with gr.Column():
|
124 |
+
with gr.Tab("OBJ"):
|
125 |
+
output_model_obj = gr.Model3D(
|
126 |
+
label="Output Model (OBJ Format)",
|
127 |
+
interactive=False,
|
128 |
+
)
|
129 |
+
gr.Markdown("Note: The model shown here is flipped. Download to get correct results.")
|
130 |
+
with gr.Tab("GLB"):
|
131 |
+
output_model_glb = gr.Model3D(
|
132 |
+
label="Output Model (GLB Format)",
|
133 |
+
interactive=False,
|
134 |
+
)
|
135 |
+
gr.Markdown("Note: The model shown here has a darker appearance. Download to get correct results.")
|
136 |
+
with gr.Row(variant="panel"):
|
137 |
+
gr.Examples(
|
138 |
+
examples=[
|
139 |
+
"examples/hamburger.png",
|
140 |
+
"examples/poly_fox.png",
|
141 |
+
"examples/robot.png",
|
142 |
+
"examples/teapot.png",
|
143 |
+
"examples/tiger_girl.png",
|
144 |
+
"examples/horse.png",
|
145 |
+
"examples/flamingo.png",
|
146 |
+
"examples/unicorn.png",
|
147 |
+
"examples/chair.png",
|
148 |
+
"examples/iso_house.png",
|
149 |
+
"examples/marble.png",
|
150 |
+
"examples/police_woman.png",
|
151 |
+
"examples/captured_p.png",
|
152 |
+
],
|
153 |
+
inputs=[input_image],
|
154 |
+
outputs=[processed_image, output_model_obj, output_model_glb],
|
155 |
+
cache_examples=False,
|
156 |
+
fn=partial(run_example),
|
157 |
+
label="Examples",
|
158 |
+
examples_per_page=20,
|
159 |
+
)
|
160 |
+
submit.click(fn=check_input_image, inputs=[input_image]).success(
|
161 |
+
fn=preprocess,
|
162 |
+
inputs=[input_image, do_remove_background, foreground_ratio],
|
163 |
+
outputs=[processed_image],
|
164 |
+
).success(
|
165 |
+
fn=generate,
|
166 |
+
inputs=[processed_image, mc_resolution],
|
167 |
+
outputs=[output_model_obj, output_model_glb],
|
168 |
+
)
|
169 |
+
|
170 |
+
|
171 |
+
|
172 |
+
if __name__ == '__main__':
|
173 |
+
parser = argparse.ArgumentParser()
|
174 |
+
parser.add_argument('--username', type=str, default=None, help='Username for authentication')
|
175 |
+
parser.add_argument('--password', type=str, default=None, help='Password for authentication')
|
176 |
+
parser.add_argument('--port', type=int, default=8005, help='Port to run the server listener on')
|
177 |
+
parser.add_argument("--listen", action='store_true', default="0.0.0.0", help="launch gradio with 0.0.0.0 as server name, allowing to respond to network requests")
|
178 |
+
parser.add_argument("--share", action='store_true', help="use share=True for gradio and make the UI accessible through their site")
|
179 |
+
parser.add_argument("--queuesize", type=int, default=1, help="launch gradio queue max_size")
|
180 |
+
args = parser.parse_args()
|
181 |
+
interface.queue(max_size=args.queuesize)
|
182 |
+
interface.launch(
|
183 |
+
auth=(args.username, args.password) if (args.username and args.password) else None,
|
184 |
+
share=args.share,
|
185 |
+
server_name="0.0.0.0" if args.listen else None,
|
186 |
+
server_port=args.port
|
187 |
+
)
|