mrcuddle's picture
Update app.py
b34b2e4 verified
raw
history blame
1.87 kB
import torch
import gradio as gr
from diffusers import StableVideoDiffusionPipeline
from diffusers.utils import load_image, export_to_video
import spaces
# Check if GPU is available
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load the pipeline
pipeline = StableVideoDiffusionPipeline.from_pretrained(
"stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16"
)
pipeline.to(device)
@spaces.GPU(duration=120)
def generate_video(image_path, seed):
# Load and preprocess the image
image = load_image(image_path)
image = image.resize((1024, 576))
# Set the generator seed
generator = torch.Generator(device=device).manual_seed(seed)
# Generate the video frames
frames = pipeline(image, decode_chunk_size=8, generator=generator).frames[0]
# Export the frames to a video file
output_video_path = "generated.mp4"
export_to_video(frames, output_video_path, fps=25)
return output_video_path
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Stable Video Diffusion")
gr.Markdown("Generate a video from an uploaded image using Stable Video Diffusion.")
with gr.Row():
with gr.Column():
image_input = gr.Image(type="filepath", label="Upload Image")
seed_input = gr.Number(label="Seed", value=666666)
generate_button = gr.Button("Generate Video")
with gr.Column():
video_output = gr.Video(label="Generated Video")
with gr.Row():
example_image = gr.Image("example.jpeg", label="Example Image")
example_video = gr.Video("generated.mp4", label="Example Video")
generate_button.click(
fn=generate_video,
inputs=[image_input, seed_input],
outputs=video_output
)
# Launch the interface
if __name__ == "__main__":
demo.launch()