Spaces:
Running
Running
Upload merge.py
Browse files
merge.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import numpy as np
|
3 |
+
import os
|
4 |
+
import shutil
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from safetensors.torch import safe_open, save_file
|
8 |
+
|
9 |
+
def merge_tensors(tensor1, tensor2, p):
|
10 |
+
# Calculate the delta of the weights
|
11 |
+
delta = tensor2 - tensor1
|
12 |
+
# Generate the mask m^t from Bernoulli distribution
|
13 |
+
m = torch.from_numpy(np.random.binomial(1, p, delta.shape)).to(tensor1.dtype)
|
14 |
+
# Apply the mask to the delta to get δ̃^t
|
15 |
+
delta_tilde = m * delta
|
16 |
+
# Scale the masked delta by the dropout rate to get δ̂^t
|
17 |
+
delta_hat = delta_tilde / (1 - p)
|
18 |
+
return delta_hat
|
19 |
+
|
20 |
+
def merge_safetensors(file_path1, file_path2, p, lambda_val):
|
21 |
+
merged_tensors = {}
|
22 |
+
|
23 |
+
with safe_open(file_path1, framework="pt", device="cpu") as f1, safe_open(file_path2, framework="pt", device="cpu") as f2:
|
24 |
+
keys1 = set(f1.keys())
|
25 |
+
keys2 = set(f2.keys())
|
26 |
+
common_keys = keys1.intersection(keys2)
|
27 |
+
|
28 |
+
for key in common_keys:
|
29 |
+
tensor1 = f1.get_tensor(key)
|
30 |
+
tensor2 = f2.get_tensor(key)
|
31 |
+
tensor1, tensor2 = resize_tensors(tensor1, tensor2)
|
32 |
+
merged_tensors[key] = tensor1 + lambda_val * merge_tensors(tensor1, tensor2, p)
|
33 |
+
print("merging", key)
|
34 |
+
|
35 |
+
return merged_tensors
|
36 |
+
|
37 |
+
class BinDataHandler():
|
38 |
+
def __init__(self, data):
|
39 |
+
self.data = data
|
40 |
+
|
41 |
+
def get_tensor(self, key):
|
42 |
+
return self.data[key]
|
43 |
+
|
44 |
+
def read_tensors(file_path, ext):
|
45 |
+
if ext == ".safetensors" and file_path.endswith(".safetensors"):
|
46 |
+
f = safe_open(file_path, framework="pt", device="cpu")
|
47 |
+
return f, set(f.keys())
|
48 |
+
if ext == ".bin" and file_path.endswith(".bin"):
|
49 |
+
data = torch.load(file_path, map_location=torch.device('cpu'))
|
50 |
+
f = BinDataHandler(data)
|
51 |
+
return f, set(data.keys())
|
52 |
+
return None, None
|
53 |
+
|
54 |
+
def resize_tensors(tensor1, tensor2):
|
55 |
+
if len(tensor1.shape) not in [1, 2]:
|
56 |
+
return tensor1, tensor2
|
57 |
+
|
58 |
+
# Pad along the last dimension (width)
|
59 |
+
if tensor1.shape[-1] < tensor2.shape[-1]:
|
60 |
+
padding_size = tensor2.shape[-1] - tensor1.shape[-1]
|
61 |
+
tensor1 = F.pad(tensor1, (0, padding_size, 0, 0))
|
62 |
+
elif tensor2.shape[-1] < tensor1.shape[-1]:
|
63 |
+
padding_size = tensor1.shape[-1] - tensor2.shape[-1]
|
64 |
+
tensor2 = F.pad(tensor2, (0, padding_size, 0, 0))
|
65 |
+
|
66 |
+
# Pad along the first dimension (height)
|
67 |
+
if tensor1.shape[0] < tensor2.shape[0]:
|
68 |
+
padding_size = tensor2.shape[0] - tensor1.shape[0]
|
69 |
+
tensor1 = F.pad(tensor1, (0, 0, 0, padding_size))
|
70 |
+
elif tensor2.shape[0] < tensor1.shape[0]:
|
71 |
+
padding_size = tensor1.shape[0] - tensor2.shape[0]
|
72 |
+
tensor2 = F.pad(tensor2, (0, 0, 0, padding_size))
|
73 |
+
|
74 |
+
return tensor1, tensor2
|
75 |
+
|
76 |
+
def merge_folder(tensor_map, directory_path, p, lambda_val):
|
77 |
+
keys1 = set(tensor_map.keys())
|
78 |
+
# Some repos have both bin and safetensors, choose safetensors if so
|
79 |
+
ext = None
|
80 |
+
for filename in os.listdir(directory_path):
|
81 |
+
# Default to safetensors
|
82 |
+
if filename.endswith(".safetensors"):
|
83 |
+
ext = ".safetensors"
|
84 |
+
if filename.endswith(".bin") and ext is None:
|
85 |
+
ext = ".bin"
|
86 |
+
if ext is None:
|
87 |
+
raise "Could not find model files"
|
88 |
+
|
89 |
+
for filename in os.listdir(directory_path):
|
90 |
+
file_path = os.path.join(directory_path, filename)
|
91 |
+
f, keys2 = read_tensors(file_path, ext)
|
92 |
+
if keys2:
|
93 |
+
common_keys = keys1.intersection(keys2)
|
94 |
+
for key in common_keys:
|
95 |
+
if "block_sparse_moe.gate" in key:
|
96 |
+
tensor1 = tensor_map[key]['tensor']
|
97 |
+
tensor2 = f.get_tensor(key)
|
98 |
+
tensor_map[key]['tensor'] = (tensor1 + tensor2) /2.0
|
99 |
+
continue
|
100 |
+
tensor1 = tensor_map[key]['tensor']
|
101 |
+
tensor2 = f.get_tensor(key)
|
102 |
+
tensor1, tensor2 = resize_tensors(tensor1, tensor2)
|
103 |
+
tensor_map[key]['tensor'] = tensor1 + lambda_val * merge_tensors(tensor1, tensor2, p)
|
104 |
+
return tensor_map
|
105 |
+
|
106 |
+
def map_tensors_to_files(directory_path):
|
107 |
+
tensor_map = {}
|
108 |
+
|
109 |
+
for filename in os.listdir(directory_path):
|
110 |
+
file_path = os.path.join(directory_path, filename)
|
111 |
+
f, keys = read_tensors(file_path, '.safetensors')
|
112 |
+
if keys:
|
113 |
+
for key in keys:
|
114 |
+
tensor = f.get_tensor(key)
|
115 |
+
tensor_map[key] = {'filename':filename, 'shape':tensor.shape, 'tensor': tensor}
|
116 |
+
|
117 |
+
return tensor_map
|
118 |
+
|
119 |
+
def copy_nontensor_files(from_path, to_path):
|
120 |
+
for filename in os.listdir(from_path):
|
121 |
+
file_path = os.path.join(from_path, filename)
|
122 |
+
if from_path != to_path and not filename.startswith(".") and not filename.startswith("README") and not filename.endswith(".bin") and not filename.endswith(".safetensors") and not filename.endswith(".pt") and not os.path.isdir(file_path):
|
123 |
+
print(f"Copying {file_path} to {to_path}")
|
124 |
+
shutil.copyfile(file_path, to_path+'/'+filename)
|
125 |
+
|
126 |
+
def save_tensor_map(tensor_map, output_folder):
|
127 |
+
metadata = {'format': 'pt'}
|
128 |
+
by_filename = {}
|
129 |
+
|
130 |
+
for key, value in tensor_map.items():
|
131 |
+
filename = value["filename"]
|
132 |
+
tensor = value["tensor"]
|
133 |
+
if filename not in by_filename:
|
134 |
+
by_filename[filename] = {}
|
135 |
+
by_filename[filename][key] = tensor
|
136 |
+
|
137 |
+
for filename in sorted(by_filename.keys()):
|
138 |
+
output_file = output_folder+'/'+filename
|
139 |
+
print("Saving:", output_file)
|
140 |
+
save_file(by_filename[filename], output_file, metadata=metadata)
|
141 |
+
|
142 |
+
def main():
|
143 |
+
# Parse command-line arguments
|
144 |
+
parser = argparse.ArgumentParser(description='Merge two safetensor model files.')
|
145 |
+
parser.add_argument('base_model', type=str, help='The base model safetensor file')
|
146 |
+
parser.add_argument('second_model', type=str, help='The second model safetensor file')
|
147 |
+
parser.add_argument('output_model', type=str, help='The output merged model safetensor file')
|
148 |
+
parser.add_argument('-p', type=float, default=0.5, help='Dropout probability')
|
149 |
+
parser.add_argument('-lambda', dest='lambda_val', type=float, default=1.0, help='Scaling factor for the weight delta')
|
150 |
+
args = parser.parse_args()
|
151 |
+
|
152 |
+
if os.path.isdir(args.base_model):
|
153 |
+
if not os.path.exists(args.output_model):
|
154 |
+
os.makedirs(args.output_model)
|
155 |
+
|
156 |
+
tensor_map = map_tensors_to_files(args.base_model)
|
157 |
+
tensor_map = merge_folder(tensor_map, args.second_model, args.p, args.lambda_val)
|
158 |
+
copy_nontensor_files(args.base_model, args.output_model)
|
159 |
+
save_tensor_map(tensor_map, args.output_model)
|
160 |
+
else:
|
161 |
+
merged = merge_safetensors(args.base_model, args.second_model, args.p, args.lambda_val)
|
162 |
+
save_file(merged, args.output_model)
|
163 |
+
|
164 |
+
if __name__ == '__main__':
|
165 |
+
main()
|