DARE-MERGE-SAFETENSORS / hf_merge.py
mrcuddle's picture
Update hf_merge.py
17103cd verified
raw
history blame
7.99 kB
from pathlib import Path
from time import sleep
from tqdm import tqdm
import argparse
import requests
import git
import merge
import os
import shutil
import sys
import yaml
from huggingface_hub import snapshot_download
from huggingface_hub import HfApi, hf_hub_download
def parse_arguments():
parser = argparse.ArgumentParser(description="Merge HuggingFace models")
parser.add_argument('repo_list', type=str, help='File containing list of repositories to merge, supports mergekit yaml or txt')
parser.add_argument('output_dir', type=str, help='Directory for the merged models')
parser.add_argument('-staging', type=str, default='./staging', help='Path to staging folder')
parser.add_argument('-p', type=float, default=0.5, help='Dropout probability')
parser.add_argument('-lambda', dest='lambda_val', type=float, default=1.0, help='Scaling factor for the weight delta')
parser.add_argument('--dry', action='store_true', help='Run in dry mode without making any changes')
return parser.parse_args()
def repo_list_generator(file_path, default_p, default_lambda_val):
_, file_extension = os.path.splitext(file_path)
# Branching based on file extension
if file_extension.lower() == '.yaml' or file_extension.lower() == ".yml":
with open(file_path, 'r') as file:
data = yaml.safe_load(file)
for model_info in data['models']:
model_name = model_info['model']
p = model_info.get('parameters', {}).get('weight', default_p)
lambda_val = 1 / model_info.get('parameters', {}).get('density', default_lambda_val)
yield model_name, p, lambda_val
else: # Defaulting to txt file processing
with open(file_path, "r") as file:
repos_to_process = file.readlines()
for repo in repos_to_process:
yield repo.strip(), default_p, default_lambda_val
def reset_directories(directories, dry_run):
for directory in directories:
if os.path.exists(directory):
if dry_run:
print(f"[DRY RUN] Would delete directory {directory}")
else:
# Check if the directory is a symlink
if os.path.islink(directory):
os.unlink(directory) # Remove the symlink
else:
shutil.rmtree(directory, ignore_errors=False)
print(f"Directory {directory} deleted successfully.")
def do_merge(tensor_map, staging_path, p, lambda_val, dry_run=False):
if dry_run:
print(f"[DRY RUN] Would merge with {staging_path}")
else:
try:
print(f"Merge operation for {staging_path}")
tensor_map = merge.merge_folder(tensor_map, staging_path, p, lambda_val)
print("Merge operation completed successfully.")
except Exception as e:
print(f"Error during merge operation: {e}")
return tensor_map
def download_repo(repo_name, path, dry_run=False):
if not os.path.exists(path):
os.makedirs(path)
api = HfApi()
# Get the list of all files in the repository using HfApi
repo_files = api.list_repo_files(repo_name)
if dry_run:
print(f"[DRY RUN] Would download the following files from {repo_name} to {path}:")
for file_path in repo_files:
print(file_path)
else:
print(f"Downloading the entire repository {repo_name} directly to {path}.")
for file_path in repo_files:
print(f"Downloading {path}/{file_path}...")
# Download each file directly to the specified path
hf_hub_download(
repo_id=repo_name,
filename=file_path,
cache_dir=path,
local_dir=path, # Store directly in the target directory
local_dir_use_symlinks=False # Ensure symlinks are not used
)
print(f"Repository {repo_name} downloaded successfully to {path}.")
def should_create_symlink(repo_name):
if os.path.exists(repo_name):
return True, os.path.isfile(repo_name)
return False, False
def download_or_link_repo(repo_name, path, dry_run=False):
symlink, is_file = should_create_symlink(repo_name)
if symlink and is_file:
os.makedirs(path, exist_ok=True)
symlink_path = os.path.join(path, os.path.basename(repo_name))
os.symlink(repo_name, symlink_path)
elif symlink:
os.symlink(repo_name, path)
else:
download_repo(repo_name, path, dry_run)
def delete_repo(path, dry_run=False):
if dry_run:
print(f"[DRY RUN] Would delete repository at {path}")
else:
try:
shutil.rmtree(path)
print(f"Repository at {path} deleted successfully.")
except Exception as e:
print(f"Error deleting repository at {path}: {e}")
def get_max_vocab_size(repo_list):
max_vocab_size = 0
repo_with_max_vocab = None
for repo in repo_list:
repo_name = repo[0].strip()
url = f"https://huggingface.co/{repo_name}/raw/main/config.json"
try:
response = requests.get(url)
response.raise_for_status()
config = response.json()
vocab_size = config.get("vocab_size", 0)
if vocab_size > max_vocab_size:
max_vocab_size = vocab_size
repo_with_max_vocab = repo_name
except requests.RequestException as e:
print(f"Error fetching data from {url}: {e}")
return max_vocab_size, repo_with_max_vocab
def download_json_files(repo_name, file_paths, output_dir):
base_url = f"https://huggingface.co/{repo_name}/raw/main/"
for file_path in file_paths:
url = base_url + file_path
response = requests.get(url)
if response.status_code == 200:
with open(os.path.join(output_dir, os.path.basename(file_path)), 'wb') as file:
file.write(response.content)
else:
print(f"Failed to download {file_path}")
def process_repos(output_dir, base_model, staging_model, repo_list_file, p, lambda_val, dry_run=False):
# Check if output_dir exists
if os.path.exists(output_dir):
sys.exit(f"Output directory '{output_dir}' already exists. Exiting to prevent data loss.")
# Reset base and staging directories
reset_directories([base_model, staging_model], dry_run)
repo_list_gen = repo_list_generator(repo_list_file, p, lambda_val)
repos_to_process = list(repo_list_gen)
# Initial download for 'base_model'
download_or_link_repo(repos_to_process[0][0].strip(), base_model, dry_run)
tensor_map = merge.map_tensors_to_files(base_model)
for i, repo in enumerate(tqdm(repos_to_process[1:], desc='Merging Repos')):
repo_name = repo[0].strip()
repo_p = repo[1]
repo_lambda = repo[2]
delete_repo(staging_model, dry_run)
download_or_link_repo(repo_name, staging_model, dry_run)
tensor_map = do_merge(tensor_map, staging_model, repo_p, repo_lambda, dry_run)
os.makedirs(output_dir, exist_ok=True)
merge.copy_nontensor_files(base_model, output_dir)
# Handle LLMs that add tokens by taking the largest
if os.path.exists(os.path.join(output_dir, 'config.json')):
max_vocab_size, repo_name = get_max_vocab_size(repos_to_process)
if max_vocab_size > 0:
file_paths = ['config.json', 'special_tokens_map.json', 'tokenizer.json', 'tokenizer_config.json']
download_json_files(repo_name, file_paths, output_dir)
reset_directories([base_model, staging_model], dry_run)
merge.save_tensor_map(tensor_map, output_dir)
if __name__ == "__main__":
args = parse_arguments()
staging_path = Path(args.staging)
os.makedirs(args.staging, exist_ok=True)
process_repos(args.output_dir, staging_path / 'base_model', staging_path / 'staging_model', args.repo_list, args.p, args.lambda_val, args.dry)