Upload 5 files (#1)
Browse files- Dockerfile +29 -0
- README.md +3 -4
- app.py +110 -0
- gitattributes +35 -0
- requirements.txt +13 -0
Dockerfile
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Use an official Python runtime as a parent image
|
| 2 |
+
FROM python:3.10-slim
|
| 3 |
+
|
| 4 |
+
RUN mkdir -p /cache && chmod 777 /cache
|
| 5 |
+
ENV HF_HOME="/cache"
|
| 6 |
+
ENV HUGGINGFACE_HUB_CACHE="/cache"
|
| 7 |
+
ENV TRANSFORMERS_CACHE="/cache"
|
| 8 |
+
ENV TRANSFORMERS_CACHE="/cache"
|
| 9 |
+
|
| 10 |
+
ENV LIBROSA_CACHE_DISABLE="1"
|
| 11 |
+
|
| 12 |
+
# Set the working directory in the container
|
| 13 |
+
WORKDIR /code
|
| 14 |
+
|
| 15 |
+
# Copy the requirements file into the container
|
| 16 |
+
COPY ./requirements.txt /code/requirements.txt
|
| 17 |
+
|
| 18 |
+
# Install any needed packages specified in requirements.txt
|
| 19 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
| 20 |
+
|
| 21 |
+
# Copy the app code into the container
|
| 22 |
+
COPY ./app.py /code/app.py
|
| 23 |
+
|
| 24 |
+
# Expose the port the app runs on. HF Spaces uses 7860.
|
| 25 |
+
EXPOSE 7860
|
| 26 |
+
|
| 27 |
+
# Command to run the app using uvicorn
|
| 28 |
+
# The host must be 0.0.0.0 to be accessible from outside the container
|
| 29 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
README.md
CHANGED
|
@@ -1,12 +1,11 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: purple
|
| 5 |
-
colorTo:
|
| 6 |
sdk: docker
|
| 7 |
pinned: false
|
| 8 |
license: mit
|
| 9 |
-
short_description: Phoneme detection from audio
|
| 10 |
---
|
| 11 |
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Phoneme Transciptor
|
| 3 |
+
emoji: 💻
|
| 4 |
colorFrom: purple
|
| 5 |
+
colorTo: yellow
|
| 6 |
sdk: docker
|
| 7 |
pinned: false
|
| 8 |
license: mit
|
|
|
|
| 9 |
---
|
| 10 |
|
| 11 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import librosa
|
| 3 |
+
import soundfile as sf
|
| 4 |
+
import io
|
| 5 |
+
from fastapi import FastAPI, File, UploadFile, Request
|
| 6 |
+
from fastapi.responses import JSONResponse
|
| 7 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
| 8 |
+
|
| 9 |
+
import os
|
| 10 |
+
print("--- SCRIPT START: app.py v3 ---")
|
| 11 |
+
os.environ[ 'NUMBA_CACHE_DIR' ] = '/tmp/'
|
| 12 |
+
os.environ['LIBROSA_CACHE_DISABLE'] = '1'
|
| 13 |
+
print(f"--- LIBROSA_CACHE_DISABLE is set to: {os.environ.get('LIBROSA_CACHE_DISABLE')} ---")
|
| 14 |
+
|
| 15 |
+
# --- 1. Initialize FastAPI App ---
|
| 16 |
+
app = FastAPI(
|
| 17 |
+
title="Audio Transcription API",
|
| 18 |
+
description="An API to transcribe audio files using a Wav2Vec2 model.",
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
# --- 2. Load Model and Processor (with GPU support) ---
|
| 22 |
+
|
| 23 |
+
# <-- CHANGED: Detect if a GPU is available, otherwise use CPU
|
| 24 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 25 |
+
print(f"Using device: {device}")
|
| 26 |
+
|
| 27 |
+
MODEL_ID = "Bluecast/wav2vec2-Phoneme"
|
| 28 |
+
print(f"Loading model: {MODEL_ID}...")
|
| 29 |
+
try:
|
| 30 |
+
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
|
| 31 |
+
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
| 32 |
+
|
| 33 |
+
# <-- CHANGED: Move the model to the selected device (GPU or CPU)
|
| 34 |
+
model.to(device)
|
| 35 |
+
|
| 36 |
+
print("Model loaded successfully.")
|
| 37 |
+
except Exception as e:
|
| 38 |
+
print(f"Error loading model: {e}")
|
| 39 |
+
model = None
|
| 40 |
+
processor = None
|
| 41 |
+
|
| 42 |
+
# --- 3. Define the Transcription Endpoint ---
|
| 43 |
+
@app.post("/transcribe/")
|
| 44 |
+
async def transcribe(audio_file: UploadFile = File(...)):
|
| 45 |
+
if not model or not processor:
|
| 46 |
+
return JSONResponse(status_code=503, content={"error": "Model is not loaded."})
|
| 47 |
+
|
| 48 |
+
try:
|
| 49 |
+
contents = await audio_file.read()
|
| 50 |
+
audio_data, original_sr = sf.read(io.BytesIO(contents))
|
| 51 |
+
|
| 52 |
+
if audio_data.ndim > 1:
|
| 53 |
+
audio_data = audio_data.mean(axis=1)
|
| 54 |
+
|
| 55 |
+
resampled_audio = librosa.resample(y=audio_data, orig_sr=original_sr, target_sr=16000)
|
| 56 |
+
|
| 57 |
+
inputs = processor(resampled_audio, sampling_rate=16000, return_tensors="pt", padding=True)
|
| 58 |
+
|
| 59 |
+
# <-- CHANGED: Move the input tensors to the same device as the model
|
| 60 |
+
inputs = inputs.to(device)
|
| 61 |
+
|
| 62 |
+
with torch.no_grad():
|
| 63 |
+
logits = model(**inputs).logits
|
| 64 |
+
|
| 65 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
| 66 |
+
transcription = processor.batch_decode(predicted_ids)[0]
|
| 67 |
+
|
| 68 |
+
print(f"Transcription complete: {transcription}")
|
| 69 |
+
return {"transcription": transcription}
|
| 70 |
+
|
| 71 |
+
except Exception as e:
|
| 72 |
+
print(f"Error during transcription: {str(e)}")
|
| 73 |
+
return JSONResponse(status_code=500, content={"error": f"An error occurred: {str(e)}"})
|
| 74 |
+
|
| 75 |
+
@app.post("/transcribe_audio/")
|
| 76 |
+
async def transcribe_audio(request: Request):
|
| 77 |
+
if not model or not processor:
|
| 78 |
+
return JSONResponse(status_code=503, content={"error": "Model is not loaded."})
|
| 79 |
+
|
| 80 |
+
try:
|
| 81 |
+
contents = await request.body()
|
| 82 |
+
|
| 83 |
+
audio_data, original_sr = sf.read(io.BytesIO(contents))
|
| 84 |
+
if audio_data.ndim > 1:
|
| 85 |
+
audio_data = audio_data.mean(axis=1)
|
| 86 |
+
|
| 87 |
+
resampled_audio = librosa.resample(y=audio_data, orig_sr=original_sr, target_sr=16000)
|
| 88 |
+
|
| 89 |
+
inputs = processor(resampled_audio, sampling_rate=16000, return_tensors="pt", padding=True)
|
| 90 |
+
|
| 91 |
+
# <-- CHANGED: Move the input tensors to the same device as the model
|
| 92 |
+
inputs = inputs.to(device)
|
| 93 |
+
|
| 94 |
+
with torch.no_grad():
|
| 95 |
+
logits = model(**inputs).logits
|
| 96 |
+
|
| 97 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
| 98 |
+
transcription = processor.batch_decode(predicted_ids)[0]
|
| 99 |
+
|
| 100 |
+
print(f"Transcription complete: {transcription}")
|
| 101 |
+
return {"transcription": transcription}
|
| 102 |
+
|
| 103 |
+
except Exception as e:
|
| 104 |
+
print(f"Error during transcription: {str(e)}")
|
| 105 |
+
return JSONResponse(status_code=500, content={"error": f"An error occurred: {str(e)}"})
|
| 106 |
+
|
| 107 |
+
# --- 4. Root Endpoint for Health Check ---
|
| 108 |
+
@app.get("/")
|
| 109 |
+
def read_root():
|
| 110 |
+
return {"status": "API is running."}
|
gitattributes
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
requirements.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi
|
| 2 |
+
uvicorn
|
| 3 |
+
python-multipart==0.0.20
|
| 4 |
+
soundfile==0.13.1
|
| 5 |
+
librosa==0.10.1
|
| 6 |
+
joblib==1.3.2
|
| 7 |
+
|
| 8 |
+
# For Hugging Face and PyTorch
|
| 9 |
+
transformers==4.40.0
|
| 10 |
+
torch==2.2.1 --extra-index-url https://download.pytorch.org/whl/cu121
|
| 11 |
+
datasets==2.19.1
|
| 12 |
+
tokenizers==0.19.1
|
| 13 |
+
numpy==1.26.4
|