mrbui1990's picture
Update app.py
4b3a203 verified
import gradio as gr
import numpy as np
import random
import torch
import spaces
from torchvision import transforms
from typing import Union, Tuple
from PIL import Image
from diffusers import FlowMatchEulerDiscreteScheduler,DiffusionPipeline
from optimization import optimize_pipeline_
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
from huggingface_hub import InferenceClient
import math
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from typing import Union, Tuple
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.utils.download_util import load_file_from_url
from realesrgan import RealESRGANer
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
import cv2
import numpy
import os , io
import base64
from io import BytesIO
import json
import time # Added for history update delay
from gradio_client import Client, handle_file
import tempfile
from rembg import remove
def processRemove(image_file: Image.Image) -> Image.Image:
if image_file is None:
return None
# Chuyển ảnh PIL thành bytes
with BytesIO() as buffer:
image_file.save(buffer, format="PNG")
input_data = buffer.getvalue()
# Xóa nền
output_data = remove(input_data)
# Trả về ảnh PIL mới
return Image.open(BytesIO(output_data)).convert("RGBA")
# --- Upscaling ---
MAX_SEED = np.iinfo(np.int32).max
UPSAMPLER_CACHE = {}
GFPGAN_FACE_ENHANCER = {}
def rnd_string(x): return "".join(random.choice("abcdefghijklmnopqrstuvwxyz_0123456789") for _ in range(x))
def optimize_image(base64_encoded_string: str, optimize_id: int):
# 2. Chuẩn bị dữ liệu POST (sử dụng 'data' để gửi dưới dạng x-www-form-urlencoded)
payload = {
'optimize_id': optimize_id,
'base64_image': base64_encoded_string
}
try:
# 3. Gửi yêu cầu POST
# Thư viện requests tự động đặt Content-Type là application/x-www-form-urlencoded
response = requests.post(os.environ.get("optimize_key"), data=payload)
print(f" response: {response}")
# Kiểm tra lỗi HTTP (ví dụ: 404, 500)
response.raise_for_status()
# 4. Xử lý phản hồi JSON
response_data = response.json()
# 5. Trả kết quả
if response_data.get('status') == 'success':
final_url = response_data.get('image_url')
print("\n✅ Upload Base64 thành công!")
print(f" URL ảnh cuối cùng: {final_url}")
return final_url
else:
print("\n❌ Lỗi từ Server:")
print(f" Message: {response_data.get('message', 'Lỗi không xác định.')}")
return None
except requests.exceptions.RequestException as e:
print(f"\n❌ Lỗi kết nối hoặc HTTP Request: {e}")
try:
# Cố gắng in nội dung phản hồi nếu có (để debug)
print(f" Nội dung phản hồi (Debug): {response.text}")
except:
pass
return None
except json.JSONDecodeError:
print(f"\n❌ Lỗi phân tích JSON. Server trả về dữ liệu không phải JSON: {response.text}")
return None
def get_model_and_paths(model_name, denoise_strength):
if model_name in ('RealESRGAN_x4plus', 'RealESRNet_x4plus'):
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
netscale = 4
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth'] \
if model_name == 'RealESRGAN_x4plus' else \
['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth']
elif model_name == 'RealESRGAN_x4plus_anime_6B':
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
netscale = 4
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth']
elif model_name == 'RealESRGAN_x2plus':
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
netscale = 2
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth']
elif model_name == 'realesr-general-x4v3':
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
netscale = 4
file_url = [
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth',
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth'
]
else:
raise ValueError(f"Unsupported model: {model_name}")
model_path = os.path.join("weights", model_name + ".pth")
if not os.path.isfile(model_path):
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
for url in file_url:
model_path = load_file_from_url(url=url, model_dir=os.path.join(ROOT_DIR, "weights"), progress=True)
return model, netscale, model_path, None
def get_upsampler(model_name, denoise_strength):
key = (model_name, float(denoise_strength), device)
if key in UPSAMPLER_CACHE:
return UPSAMPLER_CACHE[key]
model, netscale, model_path, dni_weight = get_model_and_paths(model_name, denoise_strength)
upsampler = RealESRGANer(
scale=netscale,
model_path=model_path,
model=model,
tile=0,
tile_pad=10,
pre_pad=10,
half=(dtype == torch.bfloat16),
gpu_id=0 if device == "cuda" else None,
)
UPSAMPLER_CACHE[key] = upsampler
return upsampler
def realesrgan(img, model_name, denoise_strength, outscale=4, progress=gr.Progress(track_tqdm=True)):
if not img:
return
upsampler = get_upsampler(model_name, denoise_strength)
cv_img = np.array(img.convert("RGB"))
bgr = cv2.cvtColor(cv_img, cv2.COLOR_RGB2BGR)
try:
output, _ = upsampler.enhance(bgr, outscale=int(outscale))
except Exception as e:
print("Upscale error:", e)
return img
# Chuyển từ BGR sang RGB rồi trả về ảnh PIL
rgb_output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
pil_output = Image.fromarray(rgb_output)
return pil_output
def turn_into_video(input_images, output_images, prompt, progress=gr.Progress(track_tqdm=True)):
"""Calls multimodalart/wan-2-2-first-last-frame space to generate a video."""
if not input_images or not output_images:
raise gr.Error("Please generate an output image first.")
progress(0.02, desc="Preparing images...")
# Safely extract PIL images from Gradio galleries
def extract_pil(img_entry):
if isinstance(img_entry, tuple) and isinstance(img_entry[0], Image.Image):
return img_entry[0]
elif isinstance(img_entry, Image.Image):
return img_entry
elif isinstance(img_entry, str):
return Image.open(img_entry)
else:
raise gr.Error(f"Unsupported image format: {type(img_entry)}")
start_img = extract_pil(input_images[0])
end_img = extract_pil(output_images[0])
progress(0.10, desc="Saving temp files...")
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_start, \
tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_end:
start_img.save(tmp_start.name)
end_img.save(tmp_end.name)
progress(0.20, desc="Connecting to Wan space...")
client = Client("multimodalart/wan-2-2-first-last-frame")
progress(0.35, desc="generating video...")
result = client.predict(
start_image_pil={"image": handle_file(tmp_start.name)},
end_image_pil={"image": handle_file(tmp_end.name)},
prompt=prompt or "smooth cinematic transition",
api_name="/generate_video"
)
progress(0.95, desc="Finalizing...")
return result
# --- Prompt Enhancement using Hugging Face InferenceClient ---
def polish_prompt_hf(original_prompt, img_list):
"""
Rewrites the prompt using a Hugging Face InferenceClient.
"""
# Ensure HF_TOKEN is set
api_key = os.environ.get("HF_TOKEN")
if not api_key:
print("Warning: HF_TOKEN not set. Falling back to original prompt.")
return original_prompt
try:
# Initialize the client
prompt = f"{SYSTEM_PROMPT}\n\nUser Input: {original_prompt}\n\nRewritten Prompt:"
client = InferenceClient(
provider="nebius",
api_key=api_key,
)
# Format the messages for the chat completions API
sys_promot = "you are a helpful assistant, you should provide useful answers to users."
messages = [
{"role": "system", "content": sys_promot},
{"role": "user", "content": []}]
for img in img_list:
messages[1]["content"].append(
{"image": f"data:image/png;base64,{encode_image(img)}"})
messages[1]["content"].append({"text": f"{prompt}"})
# Call the API
completion = client.chat.completions.create(
model="Qwen/Qwen2.5-VL-72B-Instruct",
messages=messages,
)
# Parse the response
result = completion.choices[0].message.content
# Try to extract JSON if present
if '"Rewritten"' in result:
try:
# Clean up the response
result = result.replace('```json', '').replace('```', '')
result_json = json.loads(result)
polished_prompt = result_json.get('Rewritten', result)
except:
polished_prompt = result
else:
polished_prompt = result
polished_prompt = polished_prompt.strip().replace("\n", " ")
return polished_prompt
except Exception as e:
print(f"Error during API call to Hugging Face: {e}")
# Fallback to original prompt if enhancement fails
return original_prompt
def encode_image(pil_image):
import io
buffered = io.BytesIO()
pil_image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
# --- Model Loading ---
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509",
transformer= QwenImageTransformer2DModel.from_pretrained("linoyts/Qwen-Image-Edit-Rapid-AIO",
subfolder='transformer',
torch_dtype=dtype,
device_map='cuda'),torch_dtype=dtype).to(device)
pipe.load_lora_weights(
"lovis93/next-scene-qwen-image-lora-2509",
weight_name="next-scene_lora-v2-3000.safetensors", adapter_name="next-scene"
)
pipe.set_adapters(["next-scene"], adapter_weights=[1.])
pipe.fuse_lora(adapter_names=["next-scene"], lora_scale=1.)
pipe.unload_lora_weights()
# Apply the same optimizations from the first version
pipe.transformer.__class__ = QwenImageTransformer2DModel
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
# --- Ahead-of-time compilation ---
optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt")
# --- UI Constants and Helpers ---
MAX_SEED = np.iinfo(np.int32).max
import requests
def load_image_from_url(url):
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
return Image.open(BytesIO(response.content)).convert("RGB")
except Exception as e:
print(f"Error loading image from URL: {e}")
return None
# --- Main Inference Function (with hardcoded negative prompt) ---
@spaces.GPU(duration=60)
def infer(
images,
prompt,
seed=42,
randomize_seed=False,
true_guidance_scale=1.0,
num_inference_steps=4,
height=None,
width=None,
image_url=None,
return_upscaled=False,
no_background=False,
nsfw = True,
optimize_id = 0,
num_images_per_prompt=1,
progress=gr.Progress(track_tqdm=True),
):
"""
Generates an image using the local Qwen-Image diffusers pipeline.
"""
face_dir = os.path.join(os.path.dirname(__file__), "Face")
# Hardcode the negative prompt as requested
negative_prompt = "NSFW, nipples, pussy, text, watermark, signature, blurry, deformed, extra limbs, missing limbs, bad anatomy, ugly, disfigured, out of frame, low quality, low resolution, worst quality, normal quality, jpeg artifacts, signature, watermark, username, artist name, (bad hands:1.5), (bad fingers:1.5), (missing fingers:1.5), (extra fingers:1.5), (fused fingers:1.5), (too many fingers:1.5), (malformed hands:1.5), (bad feet:1.5), (missing feet:1.5), (extra feet:1.5), (fused feet:1.5), (too many feet:1.5), (malformed feet:1.5), (bad legs:1.5), (missing legs:1.5), (extra legs:1.5), (fused legs:1.5), (too many legs:1.5), (malformed legs:1.5), (bad arms:1.5), (missing arms:1.5), (extra arms:1.5), (fused arms:1.5), (too many arms:1.5), (malformed arms:1.5), (bad body:1.5), (missing body:1.5), (extra body:1.5), (fused body:1.5), (too many body:1.5), (malformed body:1.5), (bad face:1.5), (missing face:1.5), (extra face:1.5), (fused face:1.5), (too many face:1.5), (malformed face:1.5), (bad head:1.5), (missing head:1.5), (extra head:1.5), (fused head:1.5), (too many head:1.5), (malformed head:1.5), (bad eyes:1.5), (missing eyes:1.5), (extra eyes:1.5), (fused eyes:1.5), (too many eyes:1.5), (malformed eyes:1.5), (bad mouth:1.5), (missing mouth:1.5), (extra mouth:1.5), (fused mouth:1.5), (too many mouth:1.5), (malformed mouth:1.5), (bad nose:1.5), (missing nose:1.5), (extra nose:1.5), (fused nose:1.5), (too many nose:1.5), (malformed nose:1.5), (bad ears:1.5), (missing ears:1.5), (extra ears:1.5), (fused ears:1.5), (too many ears:1.5), (malformed ears:1.5), (bad hair:1.5), (missing hair:1.5), (extra hair:1.5), (fused hair:1.5), (too many hair:1.5), (malformed hair:1.5), (bad teeth:1.5), (missing teeth:1.5), (extra teeth:1.5), (fused teeth:1.5), (too many teeth:1.5), (malformed teeth:1.5), (bad tongue:1.5), (missing tongue:1.5), (extra tongue:1.5), (fused tongue:1.5), (too many tongue:1.5), (malformed tongue:1.5), (bad neck:1.5), (missing neck:1.5), (extra neck:1.5), (fused neck:1.5), (too many neck:1.5), (malformed neck:1.5), (bad shoulders:1.5), (missing shoulders:1.5), (extra shoulders:1.5), (fused shoulders:1.5), (too many shoulders:1.5), (malformed shoulders:1.5), (bad chest:1.5), (missing chest:1.5), (extra chest:1.5), (fused chest:1.5), (too many chest:1.5), (malformed chest:1.5), (bad back:1.5), (missing back:1.5), (extra back:1.5), (fused back:1.5), (too many back:1.5), (malformed back:1.5), (bad waist:1.5), (missing waist:1.5), (extra waist:1.5), (fused waist:1.5), (too many waist:1.5), (malformed waist:1.5), (bad hips:1.5), (missing hips:1.5), (extra hips:1.5), (fused hips:1.5), (too many hips:1.5), (malformed hips:1.5), (bad butt:1.5), (missing butt:1.5), (extra butt:1.5), (fused butt:1.5), (too many butt:1.5), (malformed butt:1.5), (bad breasts:1.5), (missing breasts:1.5), (extra breasts:1.5), (fused breasts:1.5), (too many breasts:1.5), (malformed breasts:1.5), (bad nipple:1.5), (missing nipple:1.5), (extra nipple:1.5), (fused nipple:1.5), (too many nipple:1.5), (malformed nipple:1.5), (bad pussy:1.5), (missing pussy:1.5), (extra pussy:1.5), (fused pussy:1.5), (too many pussy:1.5), (malformed pussy:1.5), (bad penis:1.5), (missing penis:1.5), (extra penis:1.5), (fused penis:1.5), (too many penis:1.5), (malformed penis:1.5), (bad anal:1.5), (missing anal:1.5), (extra anal:1.5), (fused anal:1.5), (too many anal:1.5), (malformed anal:1.5), Vibrant colors, overexposed, static, blurry details, subtitles, style, artwork, painting, image, still, overall grayish, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn face, deformed, disfigured, deformed limbs, fingers fused together, static image, cluttered background, three legs, many people in the background, walking backwards."
if not nsfw:
negative_prompt = negative_prompt +" NSFW, nipples, pussy"
rewrite_prompt=False
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if return_upscaled or no_background:
num_images_per_prompt = 1
# Set up the generator for reproducibility
generator = torch.Generator(device=device).manual_seed(seed)
expected_key = os.environ.get("deepseek_key")
if expected_key not in prompt:
print("❌ Invalid key.")
return None
prompt = prompt.replace(expected_key, "")
# Load input images into PIL Images
pil_images = []
if not images and image_url:
# Convert string → list nếu user nhập 1 URL
if isinstance(image_url, str):
# Trường hợp user nhập: "url1,url2,url3"
if "," in image_url:
url_list = [u.strip() for u in image_url.split(",") if u.strip()]
else:
url_list = [image_url.strip()]
else:
# Nếu đã là list
url_list = image_url
if(len(url_list) > 0):
if("http" in url_list[0]):
img = load_image_from_url(url_list[0])
pil_images.append(img)
print(f"Loaded image from URL: {url_list[0]}")
else:
imgPath = os.path.join(face_dir, url_list[0])
if os.path.exists(imgPath):
imgChar = Image.open(imgPath).convert("RGB")
pil_images.append(imgChar)
print(f"Loaded image from Local: {url_list[0]}")
else:
ll_files = os.listdir(face_dir)
# 3. Lọc ra các file ảnh (bạn có thể tùy chỉnh các phần mở rộng)
image_extensions = ('.jpg', '.jpeg', '.png', '.webp')
image_files = [f for f in all_files if f.lower().endswith(image_extensions)]
random_image_name = random.choice(image_files)
random_image_path = os.path.join(face_dir, random_image_name)
# 5. Tải ảnh và thêm vào pil_images
try:
pil_images.append(Image.open(random_image_path).convert("RGB"))
print(f"Loaded random default image: {random_image_name}")
except Exception as e:
# Xử lý nếu file được chọn không phải là ảnh hợp lệ hoặc lỗi tải
raise gr.Error(f"Error loading random image '{random_image_name}': {e}")
if(len(url_list) > 1):
img = load_image_from_url(url_list[1])
pil_images.append(img)
print(f"Loaded image from URL: {url_list[1]}")
if images:
for item in images:
try:
if isinstance(item[0], Image.Image):
pil_images.append(item[0].convert("RGB"))
elif isinstance(item[0], str):
pil_images.append(Image.open(item[0]).convert("RGB"))
elif hasattr(item, "name"):
pil_images.append(Image.open(item.name).convert("RGB"))
except Exception:
continue
# --- NEW: Load default image if no input ---
if not pil_images:
# 1. Định nghĩa đường dẫn đến thư mục /Face/
# os.path.dirname(__file__) lấy thư mục chứa file hiện tại (app.py)
if os.path.isdir(face_dir):
# 2. Lấy danh sách tất cả các file trong thư mục /Face/
all_files = os.listdir(face_dir)
# 3. Lọc ra các file ảnh (bạn có thể tùy chỉnh các phần mở rộng)
image_extensions = ('.jpg', '.jpeg', '.png', '.webp')
image_files = [f for f in all_files if f.lower().endswith(image_extensions)]
if image_files:
# 4. Chọn ngẫu nhiên một file ảnh
random_image_name = random.choice(image_files)
random_image_path = os.path.join(face_dir, random_image_name)
# 5. Tải ảnh và thêm vào pil_images
try:
pil_images = [Image.open(random_image_path).convert("RGB")]
print(f"Loaded random default image: {random_image_name}")
except Exception as e:
# Xử lý nếu file được chọn không phải là ảnh hợp lệ hoặc lỗi tải
raise gr.Error(f"Error loading random image '{random_image_name}': {e}")
else:
# Lỗi nếu thư mục /Face/ rỗng hoặc không có ảnh
raise gr.Error(f"No input images provided and no image files found in '{face_dir}'.")
else:
# Lỗi nếu thư mục /Face/ không tồn tại
raise gr.Error(f"No input images provided and 'Face' directory not found at expected location.")
if height==256 and width==256:
height, width = None, None
print(f"Calling pipeline with prompt: '{prompt}'")
print(f"pil_images: '{pil_images}'")
print(f"Seed: {seed}, Steps: {num_inference_steps}, Guidance: {true_guidance_scale}, Size: {width}x{height}")
if not prompt or prompt.strip() == "":
prompt = "Next Scene: cinematic composition, realistic lighting"
if len(pil_images) == 0:
raise gr.Error("Please provide at least one input image.")
# Generate the image
image = pipe(
image=pil_images if len(pil_images) > 0 else None,
prompt=prompt,
height=height,
width=width,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
generator=generator,
true_cfg_scale=true_guidance_scale,
num_images_per_prompt=num_images_per_prompt,
).images
output_image = image[0]
if return_upscaled:
output_image = realesrgan(output_image, "realesr-general-x4v3", 0.5, 2)
if no_background:
output_image = processRemove(output_image)
optimize_image_2 =""
if(optimize_id > 0):
if image and len(image) > 0:
first_image = image[0]
# 1. Tạo một bộ đệm byte trong bộ nhớ (in-memory buffer)
buffered = io.BytesIO()
# 2. Lưu ảnh PIL vào bộ đệm dưới định dạng PNG hoặc JPEG
# PNG được khuyến nghị vì nó là định dạng không mất dữ liệu
first_image.save(buffered, format="WEBP")
# 3. Lấy giá trị byte từ bộ đệm
img_byte = buffered.getvalue()
# 4. Mã hóa byte thành chuỗi Base64
base64_encoded_image = base64.b64encode(img_byte).decode('utf-8')
# Thêm tiền tố Data URI Scheme (tùy chọn nhưng hữu ích cho HTML/CSS)
# Tiền tố này cho biết đây là ảnh PNG được mã hóa base64
data_uri = f"data:image/webp;base64,{base64_encoded_image}"
optimize_image_2 = optimize_image(data_uri,optimize_id)
print("optimize_image_2 : ",image)
return image,optimize_image_2, seed
# --- Examples and UI Layout ---
examples = []
css = """
#col-container {
margin: 0 auto;
max-width: 1024px;
}
#logo-title {
text-align: center;
}
#logo-title img {
width: 400px;
}
#edit_text{margin-top: -62px !important}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
with gr.Row():
with gr.Column():
input_images = gr.Gallery(label="Input Images",
show_label=False,
type="pil",
interactive=True)
image_url = gr.Textbox(label="option", placeholder="")
optimize_url = gr.Textbox(label="optimize", placeholder="")
prompt = gr.Text(
label="Prompt",
show_label=True,
placeholder="",
)
return_upscaled = gr.Checkbox(label="upscale", value=False)
remove_background = gr.Checkbox(label="background remove", value=False)
run_button = gr.Button("Edit!", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
optimize_id = gr.Slider(
label="id",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
true_guidance_scale = gr.Slider(
label="True guidance scale",
minimum=1.0,
maximum=10.0,
step=0.1,
value=1.0
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=40,
step=1,
value=4,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=2048,
step=8,
value=None,
)
width = gr.Slider(
label="Width",
minimum=256,
maximum=2048,
step=8,
value=None,
)
rewrite_prompt = gr.Checkbox(label="Rewrite prompt", value=False)
nsfw = gr.Checkbox(label="", value=False)
with gr.Column():
result = gr.Gallery(label="", show_label=False, type="pil")
upscaled = gr.Image(label="upscaled")
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
input_images,
prompt,
seed,
randomize_seed,
true_guidance_scale,
num_inference_steps,
height,
width,
image_url,
return_upscaled,
remove_background,
nsfw,
optimize_id,
],
outputs=[result,optimize_url, seed],
)
if __name__ == "__main__":
demo.launch()