Spaces:
Running
on
Zero
Running
on
Zero
mrbeliever
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,6 @@ import spaces
|
|
2 |
import gradio as gr
|
3 |
import re
|
4 |
from PIL import Image
|
5 |
-
|
6 |
import os
|
7 |
import numpy as np
|
8 |
import torch
|
@@ -13,24 +12,16 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
13 |
|
14 |
pipe = FluxImg2ImgPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(device)
|
15 |
|
16 |
-
|
17 |
-
|
18 |
def sanitize_prompt(prompt):
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
return sanitized_prompt
|
23 |
|
24 |
-
def convert_to_fit_size(original_width_and_height, maximum_size
|
25 |
-
width, height =original_width_and_height
|
26 |
if width <= maximum_size and height <= maximum_size:
|
27 |
-
return width,height
|
28 |
-
|
29 |
-
if width > height:
|
30 |
-
scaling_factor = maximum_size / width
|
31 |
-
else:
|
32 |
-
scaling_factor = maximum_size / height
|
33 |
-
|
34 |
new_width = int(width * scaling_factor)
|
35 |
new_height = int(height * scaling_factor)
|
36 |
return new_width, new_height
|
@@ -40,78 +31,45 @@ def adjust_to_multiple_of_32(width: int, height: int):
|
|
40 |
height = height - (height % 32)
|
41 |
return width, height
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
@spaces.GPU(duration=120)
|
47 |
-
def process_images(image,prompt="a girl",strength=0.75,seed=0,inference_step=4,progress=gr.Progress(track_tqdm=True)):
|
48 |
-
#print("start process_images")
|
49 |
progress(0, desc="Starting")
|
50 |
-
|
51 |
-
|
52 |
-
def process_img2img(image,prompt="a person",strength=0.75,seed=0,num_inference_steps=4):
|
53 |
-
#print("start process_img2img")
|
54 |
-
if image == None:
|
55 |
-
print("empty input image returned")
|
56 |
return None
|
57 |
-
|
58 |
-
generators = []
|
59 |
generator = torch.Generator(device).manual_seed(seed)
|
60 |
-
|
61 |
-
width,height =
|
62 |
-
#print(f"fit {width}x{height}")
|
63 |
-
width,height = adjust_to_multiple_of_32(width,height)
|
64 |
-
#print(f"multiple {width}x{height}")
|
65 |
image = image.resize((width, height), Image.LANCZOS)
|
66 |
-
|
67 |
-
|
68 |
-
# more parameter see https://huggingface.co/docs/diffusers/api/pipelines/flux#diffusers.FluxInpaintPipeline
|
69 |
-
#print(prompt)
|
70 |
-
output = pipe(prompt=prompt, image=image,generator=generator,strength=strength,width=width,height=height
|
71 |
-
,guidance_scale=0,num_inference_steps=num_inference_steps,max_sequence_length=256)
|
72 |
-
|
73 |
-
# TODO support mask
|
74 |
return output.images[0]
|
75 |
-
|
76 |
-
output = process_img2img(image,prompt,strength,seed,inference_step)
|
77 |
-
|
78 |
-
#print("end process_images")
|
79 |
return output
|
80 |
-
|
81 |
|
82 |
def read_file(path: str) -> str:
|
83 |
with open(path, 'r', encoding='utf-8') as f:
|
84 |
content = f.read()
|
85 |
-
|
86 |
return content
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
#col-left {
|
91 |
-
margin: 0 auto;
|
92 |
-
max-width: 640px;
|
93 |
-
}
|
94 |
-
#col-right {
|
95 |
margin: 0 auto;
|
96 |
max-width: 640px;
|
97 |
}
|
98 |
.grid-container {
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
}
|
104 |
-
|
105 |
.image {
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
}
|
110 |
-
|
111 |
.text {
|
112 |
-
|
113 |
}
|
114 |
-
|
115 |
"""
|
116 |
|
117 |
with gr.Blocks(css=css, elem_id="demo-container") as demo:
|
@@ -119,49 +77,35 @@ with gr.Blocks(css=css, elem_id="demo-container") as demo:
|
|
119 |
gr.HTML(read_file("demo_header.html"))
|
120 |
gr.HTML(read_file("demo_tools.html"))
|
121 |
with gr.Row():
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
strength = gr.Number(value=0.75, minimum=0, maximum=0.75, step=0.01, label="strength")
|
133 |
-
seed = gr.Number(value=100, minimum=0, step=1, label="seed")
|
134 |
-
inference_step = gr.Number(value=4, minimum=1, step=4, label="inference_step")
|
135 |
-
id_input=gr.Text(label="Name", visible=False)
|
136 |
-
|
137 |
-
with gr.Column():
|
138 |
-
image_out = gr.Image(height=800,sources=[],label="Output", elem_id="output-img",format="jpg")
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
|
144 |
gr.Examples(
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
,
|
152 |
-
inputs=[image,image_out,prompt],
|
153 |
-
)
|
154 |
-
gr.HTML(
|
155 |
-
gr.HTML(read_file("demo_footer.html"))
|
156 |
)
|
|
|
|
|
|
|
157 |
gr.on(
|
158 |
triggers=[btn.click, prompt.submit],
|
159 |
-
fn
|
160 |
-
inputs
|
161 |
-
outputs
|
162 |
)
|
163 |
|
164 |
if __name__ == "__main__":
|
165 |
-
demo.launch()
|
166 |
-
|
167 |
-
|
|
|
2 |
import gradio as gr
|
3 |
import re
|
4 |
from PIL import Image
|
|
|
5 |
import os
|
6 |
import numpy as np
|
7 |
import torch
|
|
|
12 |
|
13 |
pipe = FluxImg2ImgPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(device)
|
14 |
|
|
|
|
|
15 |
def sanitize_prompt(prompt):
|
16 |
+
allowed_chars = re.compile(r"[^a-zA-Z0-9\s.,!?-]")
|
17 |
+
sanitized_prompt = allowed_chars.sub("", prompt)
|
18 |
+
return sanitized_prompt
|
|
|
19 |
|
20 |
+
def convert_to_fit_size(original_width_and_height, maximum_size=2048):
|
21 |
+
width, height = original_width_and_height
|
22 |
if width <= maximum_size and height <= maximum_size:
|
23 |
+
return width, height
|
24 |
+
scaling_factor = maximum_size / max(width, height)
|
|
|
|
|
|
|
|
|
|
|
25 |
new_width = int(width * scaling_factor)
|
26 |
new_height = int(height * scaling_factor)
|
27 |
return new_width, new_height
|
|
|
31 |
height = height - (height % 32)
|
32 |
return width, height
|
33 |
|
|
|
|
|
|
|
34 |
@spaces.GPU(duration=120)
|
35 |
+
def process_images(image, prompt="a girl", strength=0.75, seed=0, inference_step=4, progress=gr.Progress(track_tqdm=True)):
|
|
|
36 |
progress(0, desc="Starting")
|
37 |
+
def process_img2img(image, prompt="a person", strength=0.75, seed=0, num_inference_steps=4):
|
38 |
+
if image is None:
|
|
|
|
|
|
|
|
|
39 |
return None
|
|
|
|
|
40 |
generator = torch.Generator(device).manual_seed(seed)
|
41 |
+
width, height = convert_to_fit_size(image.size)
|
42 |
+
width, height = adjust_to_multiple_of_32(width, height)
|
|
|
|
|
|
|
43 |
image = image.resize((width, height), Image.LANCZOS)
|
44 |
+
output = pipe(prompt=prompt, image=image, generator=generator, strength=strength, width=width, height=height, guidance_scale=0, num_inference_steps=num_inference_steps, max_sequence_length=256)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
return output.images[0]
|
46 |
+
output = process_img2img(image, prompt, strength, seed, inference_step)
|
|
|
|
|
|
|
47 |
return output
|
|
|
48 |
|
49 |
def read_file(path: str) -> str:
|
50 |
with open(path, 'r', encoding='utf-8') as f:
|
51 |
content = f.read()
|
|
|
52 |
return content
|
53 |
|
54 |
+
css = """
|
55 |
+
#col-left, #col-right {
|
|
|
|
|
|
|
|
|
|
|
56 |
margin: 0 auto;
|
57 |
max-width: 640px;
|
58 |
}
|
59 |
.grid-container {
|
60 |
+
display: flex;
|
61 |
+
align-items: center;
|
62 |
+
justify-content: center;
|
63 |
+
gap: 10px;
|
64 |
}
|
|
|
65 |
.image {
|
66 |
+
width: 256px;
|
67 |
+
height: 256px;
|
68 |
+
object-fit: cover;
|
69 |
}
|
|
|
70 |
.text {
|
71 |
+
font-size: 16px;
|
72 |
}
|
|
|
73 |
"""
|
74 |
|
75 |
with gr.Blocks(css=css, elem_id="demo-container") as demo:
|
|
|
77 |
gr.HTML(read_file("demo_header.html"))
|
78 |
gr.HTML(read_file("demo_tools.html"))
|
79 |
with gr.Row():
|
80 |
+
with gr.Column():
|
81 |
+
image = gr.Image(width=256, height=256, sources=['upload', 'clipboard'], image_mode='RGB', elem_id="image_upload", type="pil", label="Upload")
|
82 |
+
prompt = gr.Textbox(label="Prompt", value="a woman", placeholder="Your prompt", elem_id="prompt")
|
83 |
+
btn = gr.Button("Generate", elem_id="run_button", variant="primary")
|
84 |
+
with gr.Accordion(label="Advanced Settings", open=False):
|
85 |
+
strength = gr.Number(value=0.75, minimum=0, maximum=0.75, step=0.01, label="Strength")
|
86 |
+
seed = gr.Number(value=100, minimum=0, step=1, label="Seed")
|
87 |
+
inference_step = gr.Number(value=4, minimum=1, step=4, label="Inference Steps")
|
88 |
+
with gr.Column():
|
89 |
+
image_out = gr.Image(width=256, height=256, label="Output", elem_id="output-img", format="jpg")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
gr.Examples(
|
92 |
+
examples=[
|
93 |
+
["examples/draw_input.jpg", "examples/draw_output.jpg", "a woman, eyes closed, mouth open"],
|
94 |
+
["examples/draw-gimp_input.jpg", "examples/draw-gimp_output.jpg", "a woman, eyes closed, mouth open"],
|
95 |
+
["examples/gimp_input.jpg", "examples/gimp_output.jpg", "a woman, hand on neck"],
|
96 |
+
["examples/inpaint_input.jpg", "examples/inpaint_output.jpg", "a woman, hand on neck"]
|
97 |
+
],
|
98 |
+
inputs=[image, image_out, prompt],
|
|
|
|
|
|
|
|
|
99 |
)
|
100 |
+
|
101 |
+
gr.HTML(gr.HTML(read_file("demo_footer.html")))
|
102 |
+
|
103 |
gr.on(
|
104 |
triggers=[btn.click, prompt.submit],
|
105 |
+
fn=process_images,
|
106 |
+
inputs=[image, prompt, strength, seed, inference_step],
|
107 |
+
outputs=[image_out]
|
108 |
)
|
109 |
|
110 |
if __name__ == "__main__":
|
111 |
+
demo.launch()
|
|
|
|