Spaces:
Build error
Build error
import numpy as np | |
from utils.commons.hparams import hparams | |
class NoneSchedule(object): | |
def __init__(self, optimizer, lr): | |
self.optimizer = optimizer | |
self.constant_lr = lr | |
self.step(0) | |
def step(self, num_updates): | |
self.lr = self.constant_lr | |
for param_group in self.optimizer.param_groups: | |
param_group['lr'] = self.lr | |
return self.lr | |
def get_lr(self): | |
return self.optimizer.param_groups[0]['lr'] | |
def get_last_lr(self): | |
return self.get_lr() | |
class RSQRTSchedule(NoneSchedule): | |
def __init__(self, optimizer, lr, warmup_updates, hidden_size): | |
self.optimizer = optimizer | |
self.constant_lr = lr | |
self.warmup_updates = warmup_updates | |
self.hidden_size = hidden_size | |
self.lr = lr | |
for param_group in optimizer.param_groups: | |
param_group['lr'] = self.lr | |
self.step(0) | |
def step(self, num_updates): | |
constant_lr = self.constant_lr | |
warmup = min(num_updates / self.warmup_updates, 1.0) | |
rsqrt_decay = max(self.warmup_updates, num_updates) ** -0.5 | |
rsqrt_hidden = self.hidden_size ** -0.5 | |
self.lr = max(constant_lr * warmup * rsqrt_decay * rsqrt_hidden, 1e-7) | |
for param_group in self.optimizer.param_groups: | |
param_group['lr'] = self.lr | |
return self.lr | |
class WarmupSchedule(NoneSchedule): | |
def __init__(self, optimizer, lr, warmup_updates): | |
self.optimizer = optimizer | |
self.constant_lr = self.lr = lr | |
self.warmup_updates = warmup_updates | |
for param_group in optimizer.param_groups: | |
param_group['lr'] = self.lr | |
self.step(0) | |
def step(self, num_updates): | |
constant_lr = self.constant_lr | |
warmup = min(num_updates / self.warmup_updates, 1.0) | |
self.lr = max(constant_lr * warmup, 1e-7) | |
for param_group in self.optimizer.param_groups: | |
param_group['lr'] = self.lr | |
return self.lr | |
class ExponentialSchedule(NoneSchedule): | |
def __init__(self, optimizer, lr, warmup_updates): | |
self.optimizer = optimizer | |
self.constant_lr = self.lr = lr | |
self.warmup_updates = warmup_updates | |
for param_group in optimizer.param_groups: | |
param_group['lr'] = self.lr | |
self.step(0) | |
def step(self, num_updates): | |
constant_lr = self.constant_lr | |
if self.warmup_updates > 0 and num_updates <= self.warmup_updates: | |
warmup = min(num_updates / self.warmup_updates, 1.0) | |
self.lr = max(constant_lr * warmup, 1e-7) | |
else: | |
new_lrate = constant_lr * (0.1 ** (num_updates / 250_000)) # decay by 0.1x for every 250k steps | |
self.lr = max(new_lrate, hparams.get("min_lr", 1e-6)) | |
for param_group in self.optimizer.param_groups: | |
param_group['lr'] = self.lr | |
return self.lr | |
class ExponentialScheduleWithAudattNet(NoneSchedule): | |
""" | |
Default Scheduler in AD-NeRF | |
for audatt net, since it starts at 20_0000 steps, we need to enlarge its lr | |
in optimizer, we set param_groups[1] to optimize audatt net | |
""" | |
def __init__(self, optimizer, lr, warmup_updates=0): | |
self.optimizer = optimizer | |
self.constant_lr = self.lr = lr | |
self.warmup_updates = warmup_updates | |
optimizer.param_groups[0]['lr'] = self.lr | |
optimizer.param_groups[1]['lr'] = self.lr * 5 | |
self.step(0) | |
def step(self, num_updates): | |
constant_lr = self.constant_lr | |
if self.warmup_updates > 0 and num_updates <= self.warmup_updates: | |
warmup = min(num_updates / self.warmup_updates, 1.0) | |
self.lr = max(constant_lr * warmup, 1e-7) | |
else: | |
new_lrate = constant_lr * (0.1 ** (num_updates / 250_000)) # decay by 0.1x for every 250k steps | |
self.lr = max(new_lrate, 1e-7) | |
self.optimizer.param_groups[0]['lr'] = self.lr | |
self.optimizer.param_groups[1]['lr'] = self.lr * 5 | |
return self.lr | |
class ExponentialScheduleForRADNeRF(NoneSchedule): | |
""" | |
Default Scheduler in RAD-NeRF | |
RAD-NeRF has two groups of params with different lr | |
for tileGrid embedding, the lr=5e-3 | |
for other network params, the lr=5e-4 | |
""" | |
def __init__(self, optimizer, lr, warmup_updates=0): | |
self.optimizer = optimizer | |
self.constant_lr = self.lr = lr # 0.0005 | |
self.warmup_updates = warmup_updates | |
self.finetune_lips = hparams['finetune_lips'] | |
self.finetune_lips_start_iter = hparams['finetune_lips_start_iter'] | |
optimizer.param_groups[0]['lr'] = self.lr # for Net_params in RAD-NeRF, lr starts from 0.0005 | |
optimizer.param_groups[1]['lr'] = self.lr * 10 # for tileGrid, lr starts from 0.005 | |
optimizer.param_groups[2]['lr'] = self.lr * 5 # for Att Net, lr starts from 0.0025 | |
self.step(0) | |
def step(self, num_updates): | |
constant_lr = self.constant_lr | |
if self.warmup_updates > 0 and num_updates <= self.warmup_updates: | |
warmup = min(num_updates / self.warmup_updates, 1.0) | |
self.lr = max(constant_lr * warmup, 1e-5) | |
else: | |
if self.finetune_lips and num_updates > self.finetune_lips_start_iter: | |
new_lrate = constant_lr * (0.1 ** (num_updates / 250_000)) # decay by 0.05x for every 200k steps | |
else: | |
new_lrate = constant_lr * (0.1 ** (num_updates / 250_000)) # decay by 0.1x for every 200k steps | |
self.lr = max(new_lrate, 1e-5) | |
self.optimizer.param_groups[0]['lr'] = self.lr | |
self.optimizer.param_groups[1]['lr'] = self.lr * 10 | |
self.optimizer.param_groups[2]['lr'] = self.lr * 5 | |
return self.lr | |
class ExponentialScheduleForRADNeRFTorso(NoneSchedule): | |
""" | |
Default Scheduler in RAD-NeRF | |
RAD-NeRF has two groups of params with different lr | |
for tileGrid embedding, the lr=5e-3 | |
for other network params, the lr=5e-4 | |
""" | |
def __init__(self, optimizer, lr, warmup_updates=0): | |
self.optimizer = optimizer | |
self.constant_lr = self.lr = lr # 0.0005 | |
self.warmup_updates = warmup_updates | |
optimizer.param_groups[0]['lr'] = self.lr # for Net_params in RAD-NeRF, lr starts from 0.0005 | |
optimizer.param_groups[1]['lr'] = self.lr * 10 # for tileGrid, lr starts from 0.005 | |
self.step(0) | |
def step(self, num_updates): | |
constant_lr = self.constant_lr | |
if self.warmup_updates > 0 and num_updates <= self.warmup_updates: | |
warmup = min(num_updates / self.warmup_updates, 1.0) | |
self.lr = max(constant_lr * warmup, 1e-5) | |
else: | |
new_lrate = constant_lr * (0.1 ** (num_updates / 250_000)) # decay by 0.1x for every 200k steps | |
self.lr = max(new_lrate, 1e-5) | |
self.optimizer.param_groups[0]['lr'] = self.lr | |
self.optimizer.param_groups[1]['lr'] = self.lr * 10 | |
return self.lr | |
class CosineSchedule(NoneSchedule): | |
def __init__(self, optimizer, lr, warmup_updates, total_updates): | |
self.optimizer = optimizer | |
self.constant_lr = lr | |
self.warmup_updates = warmup_updates | |
self.total_updates = total_updates | |
self.lr = lr | |
self.assign_learning_rate(self.optimizer, self.lr) | |
self.step(0) | |
def assign_learning_rate(self, optimizer, new_lr): | |
for param_group in optimizer.param_groups: | |
param_group["lr"] = new_lr | |
def _warmup_lr(self, base_lr, warmup_length, step): | |
return base_lr * (step + 1) / warmup_length | |
def step(self, num_updates): | |
if self.warmup_updates > 0 and num_updates <= self.warmup_updates: | |
lr = self._warmup_lr(self.lr, self.warmup_updates, num_updates) | |
elif num_updates <= self.total_updates: | |
e = num_updates - self.warmup_updates | |
es = self.total_updates - self.warmup_updates | |
lr = 0.5 * (1 + np.cos(np.pi * e / es)) * self.lr | |
else: | |
lr = 1e-5 | |
lr = max(1e-5, lr) | |
self.assign_learning_rate(self.optimizer, lr) | |
return lr | |