Spaces:
Build error
Build error
| import torch | |
| import torch.distributed as dist | |
| import numpy as np | |
| def reduce_tensors(metrics): | |
| new_metrics = {} | |
| for k, v in metrics.items(): | |
| if isinstance(v, torch.Tensor): | |
| dist.all_reduce(v) | |
| v = v / dist.get_world_size() | |
| if type(v) is dict: | |
| v = reduce_tensors(v) | |
| new_metrics[k] = v | |
| return new_metrics | |
| def tensors_to_scalars(tensors): | |
| if isinstance(tensors, torch.Tensor): | |
| tensors = tensors.item() | |
| return tensors | |
| elif isinstance(tensors, dict): | |
| new_tensors = {} | |
| for k, v in tensors.items(): | |
| v = tensors_to_scalars(v) | |
| new_tensors[k] = v | |
| return new_tensors | |
| elif isinstance(tensors, list): | |
| return [tensors_to_scalars(v) for v in tensors] | |
| else: | |
| return tensors | |
| def convert_to_np(tensors): | |
| if isinstance(tensors, np.ndarray): | |
| return tensors | |
| elif isinstance(tensors, dict): | |
| new_np = {} | |
| for k, v in tensors.items(): | |
| if isinstance(v, torch.Tensor): | |
| v = v.cpu().numpy() | |
| if type(v) is dict: | |
| v = convert_to_np(v) | |
| new_np[k] = v | |
| elif isinstance(tensors, list): | |
| new_np = [] | |
| for v in tensors: | |
| if isinstance(v, torch.Tensor): | |
| v = v.cpu().numpy() | |
| if type(v) is dict: | |
| v = convert_to_np(v) | |
| new_np.append(v) | |
| elif isinstance(tensors, torch.Tensor): | |
| v = tensors | |
| if isinstance(v, torch.Tensor): | |
| v = v.cpu().numpy() | |
| if type(v) is dict: | |
| v = convert_to_np(v) | |
| new_np = v | |
| else: | |
| raise Exception(f'tensors_to_np does not support type {type(tensors)}.') | |
| return new_np | |
| def convert_to_tensor(arrays): | |
| if isinstance(arrays, np.ndarray): | |
| v = torch.from_numpy(arrays).float() | |
| ret = v | |
| elif isinstance(arrays, torch.Tensor): | |
| ret = arrays | |
| elif isinstance(arrays, list): | |
| v = torch.from_numpy(np.array(arrays)).float() | |
| elif type(arrays) is dict: | |
| ret = {} | |
| for k, v in arrays.items(): | |
| if isinstance(v, np.ndarray): | |
| v = torch.from_numpy(v).float() | |
| if type(v) is dict: | |
| v = convert_to_tensor(v) | |
| ret[k] = v | |
| return ret | |
| def convert_like(inp, target): | |
| if isinstance(target, np.ndarray): | |
| return convert_to_np(inp) | |
| elif isinstance(target, torch.Tensor): | |
| inp = convert_to_tensor(inp) | |
| inp = inp.to() | |
| if target.device == 'cpu': | |
| return move_to_cpu(inp) | |
| else: | |
| return move_to_cuda(inp) | |
| def move_to_cpu(tensors): | |
| ret = {} | |
| for k, v in tensors.items(): | |
| if isinstance(v, torch.Tensor): | |
| v = v.cpu() | |
| if type(v) is dict: | |
| v = move_to_cpu(v) | |
| ret[k] = v | |
| return ret | |
| def move_to_cuda(batch, gpu_id=0): | |
| # base case: object can be directly moved using `cuda` or `to` | |
| if callable(getattr(batch, 'cuda', None)): | |
| return batch.cuda(gpu_id, non_blocking=True) | |
| elif callable(getattr(batch, 'to', None)): | |
| return batch.to(torch.device('cuda', gpu_id), non_blocking=True) | |
| elif isinstance(batch, list): | |
| for i, x in enumerate(batch): | |
| batch[i] = move_to_cuda(x, gpu_id) | |
| return batch | |
| elif isinstance(batch, tuple): | |
| batch = list(batch) | |
| for i, x in enumerate(batch): | |
| batch[i] = move_to_cuda(x, gpu_id) | |
| return tuple(batch) | |
| elif isinstance(batch, dict): | |
| for k, v in batch.items(): | |
| batch[k] = move_to_cuda(v, gpu_id) | |
| return batch | |
| elif isinstance(batch, int) or isinstance(batch, float) or isinstance(batch, str): | |
| return batch | |
| elif batch is None: | |
| return None | |
| else: | |
| print("| Error in move_to_batch: ",type(batch), batch) | |
| raise NotImplementedError() | |
| return batch | |
| def convert_to_half(arrays): | |
| if isinstance(arrays, np.ndarray): | |
| v = torch.from_numpy(arrays).half() | |
| ret = v | |
| elif isinstance(arrays, torch.Tensor): | |
| ret = arrays.half() | |
| elif isinstance(arrays, list): | |
| ret = [None for _ in range(len(arrays))] | |
| for i, v in enumerate(arrays): | |
| ret[i] = v.half() | |
| elif type(arrays) is dict: | |
| ret = {} | |
| for k, v in arrays.items(): | |
| if isinstance(v, np.ndarray): | |
| v = torch.from_numpy(v).half() | |
| if type(v) is dict: | |
| v = convert_to_tensor(v) | |
| ret[k] = v | |
| return ret |