Spaces:
Build error
Build error
| import os | |
| os.environ["OMP_NUM_THREADS"] = "1" | |
| import random | |
| import glob | |
| import cv2 | |
| import tqdm | |
| import numpy as np | |
| from typing import Union | |
| from utils.commons.tensor_utils import convert_to_np | |
| from utils.commons.os_utils import multiprocess_glob | |
| import pickle | |
| import traceback | |
| import multiprocessing | |
| from utils.commons.multiprocess_utils import multiprocess_run_tqdm | |
| from scipy.ndimage import binary_erosion, binary_dilation | |
| from sklearn.neighbors import NearestNeighbors | |
| from mediapipe.tasks.python import vision | |
| from data_gen.utils.mp_feature_extractors.mp_segmenter import MediapipeSegmenter, encode_segmap_mask_to_image, decode_segmap_mask_from_image, job_cal_seg_map_for_image | |
| seg_model = None | |
| segmenter = None | |
| mat_model = None | |
| lama_model = None | |
| lama_config = None | |
| from data_gen.utils.process_video.split_video_to_imgs import extract_img_job | |
| BG_NAME_MAP = { | |
| "knn": "", | |
| } | |
| FRAME_SELECT_INTERVAL = 5 | |
| SIM_METHOD = "mse" | |
| SIM_THRESHOLD = 3 | |
| def save_file(name, content): | |
| with open(name, "wb") as f: | |
| pickle.dump(content, f) | |
| def load_file(name): | |
| with open(name, "rb") as f: | |
| content = pickle.load(f) | |
| return content | |
| def save_rgb_alpha_image_to_path(img, alpha, img_path): | |
| try: os.makedirs(os.path.dirname(img_path), exist_ok=True) | |
| except: pass | |
| cv2.imwrite(img_path, np.concatenate([cv2.cvtColor(img, cv2.COLOR_RGB2BGR), alpha], axis=-1)) | |
| def save_rgb_image_to_path(img, img_path): | |
| try: os.makedirs(os.path.dirname(img_path), exist_ok=True) | |
| except: pass | |
| cv2.imwrite(img_path, cv2.cvtColor(img, cv2.COLOR_RGB2BGR)) | |
| def load_rgb_image_to_path(img_path): | |
| return cv2.cvtColor(cv2.imread(img_path), cv2.COLOR_BGR2RGB) | |
| def image_similarity(x: np.ndarray, y: np.ndarray, method="mse"): | |
| if method == "mse": | |
| return np.mean((x - y) ** 2) | |
| else: | |
| raise NotImplementedError | |
| def extract_background(img_lst, segmap_mask_lst=None, method="knn", device='cpu', mix_bg=True): | |
| """ | |
| img_lst: list of rgb ndarray | |
| method: "knn" | |
| """ | |
| global segmenter | |
| global seg_model | |
| global mat_model | |
| global lama_model | |
| global lama_config | |
| assert len(img_lst) > 0 | |
| if segmap_mask_lst is not None: | |
| assert len(segmap_mask_lst) == len(img_lst) | |
| else: | |
| del segmenter | |
| del seg_model | |
| seg_model = MediapipeSegmenter() | |
| segmenter = vision.ImageSegmenter.create_from_options(seg_model.video_options) | |
| def get_segmap_mask(img_lst, segmap_mask_lst, index): | |
| if segmap_mask_lst is not None: | |
| segmap = refresh_segment_mask(segmap_mask_lst[index]) | |
| else: | |
| segmap = seg_model._cal_seg_map(refresh_image(img_lst[index]), segmenter=segmenter) | |
| return segmap | |
| if method == "knn": | |
| num_frames = len(img_lst) | |
| if num_frames < 100: | |
| FRAME_SELECT_INTERVAL = 5 | |
| elif num_frames < 10000: | |
| FRAME_SELECT_INTERVAL = 20 | |
| else: | |
| FRAME_SELECT_INTERVAL = num_frames // 500 | |
| img_lst = img_lst[::FRAME_SELECT_INTERVAL] if num_frames > FRAME_SELECT_INTERVAL else img_lst[0:1] | |
| if segmap_mask_lst is not None: | |
| segmap_mask_lst = segmap_mask_lst[::FRAME_SELECT_INTERVAL] if num_frames > FRAME_SELECT_INTERVAL else segmap_mask_lst[0:1] | |
| assert len(img_lst) == len(segmap_mask_lst) | |
| # get H/W | |
| h, w = refresh_image(img_lst[0]).shape[:2] | |
| # nearest neighbors | |
| all_xys = np.mgrid[0:h, 0:w].reshape(2, -1).transpose() # [512*512, 2] coordinate grid | |
| distss = [] | |
| for idx, img in tqdm.tqdm(enumerate(img_lst), desc='combining backgrounds...', total=len(img_lst)): | |
| segmap = get_segmap_mask(img_lst=img_lst, segmap_mask_lst=segmap_mask_lst, index=idx) | |
| bg = (segmap[0]).astype(bool) # [h,w] bool mask | |
| fg_xys = np.stack(np.nonzero(~bg)).transpose(1, 0) # [N_nonbg,2] coordinate of non-bg pixels | |
| nbrs = NearestNeighbors(n_neighbors=1, algorithm='kd_tree').fit(fg_xys) | |
| dists, _ = nbrs.kneighbors(all_xys) # [512*512, 1] distance to nearest non-bg pixel | |
| distss.append(dists) | |
| distss = np.stack(distss) # [B, 512*512, 1] | |
| max_dist = np.max(distss, 0) # [512*512, 1] | |
| max_id = np.argmax(distss, 0) # id of frame | |
| bc_pixs = max_dist > 10 # 在各个frame有一个出现过是bg的pixel,bg标准是离最近的non-bg pixel距离大于10 | |
| bc_pixs_id = np.nonzero(bc_pixs) | |
| bc_ids = max_id[bc_pixs] | |
| # TODO: maybe we should reimplement here to avoid memory costs? | |
| # though there is upper limits of images here | |
| num_pixs = distss.shape[1] | |
| bg_img = np.zeros((h*w, 3), dtype=np.uint8) | |
| img_lst = [refresh_image(img) for img in img_lst] | |
| imgs = np.stack(img_lst).reshape(-1, num_pixs, 3) | |
| bg_img[bc_pixs_id, :] = imgs[bc_ids, bc_pixs_id, :] # 对那些铁bg的pixel,直接去对应的image里面采样 | |
| bg_img = bg_img.reshape(h, w, 3) | |
| max_dist = max_dist.reshape(h, w) | |
| bc_pixs = max_dist > 10 # 5 | |
| bg_xys = np.stack(np.nonzero(~bc_pixs)).transpose() | |
| fg_xys = np.stack(np.nonzero(bc_pixs)).transpose() | |
| nbrs = NearestNeighbors(n_neighbors=1, algorithm='kd_tree').fit(fg_xys) | |
| distances, indices = nbrs.kneighbors(bg_xys) # 对non-bg img,用KNN找最近的bg pixel | |
| bg_fg_xys = fg_xys[indices[:, 0]] | |
| bg_img[bg_xys[:, 0], bg_xys[:, 1], :] = bg_img[bg_fg_xys[:, 0], bg_fg_xys[:, 1], :] | |
| else: | |
| raise NotImplementedError # deperated | |
| return bg_img | |
| def inpaint_torso_job(gt_img, segmap): | |
| bg_part = (segmap[0]).astype(bool) | |
| head_part = (segmap[1] + segmap[3] + segmap[5]).astype(bool) | |
| neck_part = (segmap[2]).astype(bool) | |
| torso_part = (segmap[4]).astype(bool) | |
| img = gt_img.copy() | |
| img[head_part] = 0 | |
| # torso part "vertical" in-painting... | |
| L = 8 + 1 | |
| torso_coords = np.stack(np.nonzero(torso_part), axis=-1) # [M, 2] | |
| # lexsort: sort 2D coords first by y then by x, | |
| # ref: https://stackoverflow.com/questions/2706605/sorting-a-2d-numpy-array-by-multiple-axes | |
| inds = np.lexsort((torso_coords[:, 0], torso_coords[:, 1])) | |
| torso_coords = torso_coords[inds] | |
| # choose the top pixel for each column | |
| u, uid, ucnt = np.unique(torso_coords[:, 1], return_index=True, return_counts=True) | |
| top_torso_coords = torso_coords[uid] # [m, 2] | |
| # only keep top-is-head pixels | |
| top_torso_coords_up = top_torso_coords.copy() - np.array([1, 0]) # [N, 2] | |
| mask = head_part[tuple(top_torso_coords_up.T)] | |
| if mask.any(): | |
| top_torso_coords = top_torso_coords[mask] | |
| # get the color | |
| top_torso_colors = gt_img[tuple(top_torso_coords.T)] # [m, 3] | |
| # construct inpaint coords (vertically up, or minus in x) | |
| inpaint_torso_coords = top_torso_coords[None].repeat(L, 0) # [L, m, 2] | |
| inpaint_offsets = np.stack([-np.arange(L), np.zeros(L, dtype=np.int32)], axis=-1)[:, None] # [L, 1, 2] | |
| inpaint_torso_coords += inpaint_offsets | |
| inpaint_torso_coords = inpaint_torso_coords.reshape(-1, 2) # [Lm, 2] | |
| inpaint_torso_colors = top_torso_colors[None].repeat(L, 0) # [L, m, 3] | |
| darken_scaler = 0.98 ** np.arange(L).reshape(L, 1, 1) # [L, 1, 1] | |
| inpaint_torso_colors = (inpaint_torso_colors * darken_scaler).reshape(-1, 3) # [Lm, 3] | |
| # set color | |
| img[tuple(inpaint_torso_coords.T)] = inpaint_torso_colors | |
| inpaint_torso_mask = np.zeros_like(img[..., 0]).astype(bool) | |
| inpaint_torso_mask[tuple(inpaint_torso_coords.T)] = True | |
| else: | |
| inpaint_torso_mask = None | |
| # neck part "vertical" in-painting... | |
| push_down = 4 | |
| L = 48 + push_down + 1 | |
| neck_part = binary_dilation(neck_part, structure=np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=bool), iterations=3) | |
| neck_coords = np.stack(np.nonzero(neck_part), axis=-1) # [M, 2] | |
| # lexsort: sort 2D coords first by y then by x, | |
| # ref: https://stackoverflow.com/questions/2706605/sorting-a-2d-numpy-array-by-multiple-axes | |
| inds = np.lexsort((neck_coords[:, 0], neck_coords[:, 1])) | |
| neck_coords = neck_coords[inds] | |
| # choose the top pixel for each column | |
| u, uid, ucnt = np.unique(neck_coords[:, 1], return_index=True, return_counts=True) | |
| top_neck_coords = neck_coords[uid] # [m, 2] | |
| # only keep top-is-head pixels | |
| top_neck_coords_up = top_neck_coords.copy() - np.array([1, 0]) | |
| mask = head_part[tuple(top_neck_coords_up.T)] | |
| top_neck_coords = top_neck_coords[mask] | |
| # push these top down for 4 pixels to make the neck inpainting more natural... | |
| offset_down = np.minimum(ucnt[mask] - 1, push_down) | |
| top_neck_coords += np.stack([offset_down, np.zeros_like(offset_down)], axis=-1) | |
| # get the color | |
| top_neck_colors = gt_img[tuple(top_neck_coords.T)] # [m, 3] | |
| # construct inpaint coords (vertically up, or minus in x) | |
| inpaint_neck_coords = top_neck_coords[None].repeat(L, 0) # [L, m, 2] | |
| inpaint_offsets = np.stack([-np.arange(L), np.zeros(L, dtype=np.int32)], axis=-1)[:, None] # [L, 1, 2] | |
| inpaint_neck_coords += inpaint_offsets | |
| inpaint_neck_coords = inpaint_neck_coords.reshape(-1, 2) # [Lm, 2] | |
| inpaint_neck_colors = top_neck_colors[None].repeat(L, 0) # [L, m, 3] | |
| darken_scaler = 0.98 ** np.arange(L).reshape(L, 1, 1) # [L, 1, 1] | |
| inpaint_neck_colors = (inpaint_neck_colors * darken_scaler).reshape(-1, 3) # [Lm, 3] | |
| # set color | |
| img[tuple(inpaint_neck_coords.T)] = inpaint_neck_colors | |
| # apply blurring to the inpaint area to avoid vertical-line artifects... | |
| inpaint_mask = np.zeros_like(img[..., 0]).astype(bool) | |
| inpaint_mask[tuple(inpaint_neck_coords.T)] = True | |
| blur_img = img.copy() | |
| blur_img = cv2.GaussianBlur(blur_img, (5, 5), cv2.BORDER_DEFAULT) | |
| img[inpaint_mask] = blur_img[inpaint_mask] | |
| # set mask | |
| torso_img_mask = (neck_part | torso_part | inpaint_mask) | |
| torso_with_bg_img_mask = (bg_part | neck_part | torso_part | inpaint_mask) | |
| if inpaint_torso_mask is not None: | |
| torso_img_mask = torso_img_mask | inpaint_torso_mask | |
| torso_with_bg_img_mask = torso_with_bg_img_mask | inpaint_torso_mask | |
| torso_img = img.copy() | |
| torso_img[~torso_img_mask] = 0 | |
| torso_with_bg_img = img.copy() | |
| torso_img[~torso_with_bg_img_mask] = 0 | |
| return torso_img, torso_img_mask, torso_with_bg_img, torso_with_bg_img_mask | |
| def load_segment_mask_from_file(filename: str): | |
| encoded_segmap = load_rgb_image_to_path(filename) | |
| segmap_mask = decode_segmap_mask_from_image(encoded_segmap) | |
| return segmap_mask | |
| # load segment mask to memory if not loaded yet | |
| def refresh_segment_mask(segmap_mask: Union[str, np.ndarray]): | |
| if isinstance(segmap_mask, str): | |
| segmap_mask = load_segment_mask_from_file(segmap_mask) | |
| return segmap_mask | |
| # load segment mask to memory if not loaded yet | |
| def refresh_image(image: Union[str, np.ndarray]): | |
| if isinstance(image, str): | |
| image = load_rgb_image_to_path(image) | |
| return image | |
| def generate_segment_imgs_job(img_name, segmap, img): | |
| out_img_name = segmap_name = img_name.replace("/gt_imgs/", "/segmaps/").replace(".jpg", ".png") # 存成jpg的话,pixel value会有误差 | |
| try: os.makedirs(os.path.dirname(out_img_name), exist_ok=True) | |
| except: pass | |
| encoded_segmap = encode_segmap_mask_to_image(segmap) | |
| save_rgb_image_to_path(encoded_segmap, out_img_name) | |
| for mode in ['head', 'torso', 'person', 'bg']: | |
| out_img, mask = seg_model._seg_out_img_with_segmap(img, segmap, mode=mode) | |
| img_alpha = 255 * np.ones((img.shape[0], img.shape[1], 1), dtype=np.uint8) # alpha | |
| mask = mask[0][..., None] | |
| img_alpha[~mask] = 0 | |
| out_img_name = img_name.replace("/gt_imgs/", f"/{mode}_imgs/").replace(".jpg", ".png") | |
| save_rgb_alpha_image_to_path(out_img, img_alpha, out_img_name) | |
| inpaint_torso_img, inpaint_torso_img_mask, inpaint_torso_with_bg_img, inpaint_torso_with_bg_img_mask = inpaint_torso_job(img, segmap) | |
| img_alpha = 255 * np.ones((img.shape[0], img.shape[1], 1), dtype=np.uint8) # alpha | |
| img_alpha[~inpaint_torso_img_mask[..., None]] = 0 | |
| out_img_name = img_name.replace("/gt_imgs/", f"/inpaint_torso_imgs/").replace(".jpg", ".png") | |
| save_rgb_alpha_image_to_path(inpaint_torso_img, img_alpha, out_img_name) | |
| return segmap_name | |
| def segment_and_generate_for_image_job(img_name, img, segmenter_options=None, segmenter=None, store_in_memory=False): | |
| img = refresh_image(img) | |
| segmap_mask, segmap_image = job_cal_seg_map_for_image(img, segmenter_options=segmenter_options, segmenter=segmenter) | |
| segmap_name = generate_segment_imgs_job(img_name=img_name, segmap=segmap_mask, img=img) | |
| if store_in_memory: | |
| return segmap_mask | |
| else: | |
| return segmap_name | |
| def extract_segment_job( | |
| video_name, | |
| nerf=False, | |
| background_method='knn', | |
| device="cpu", | |
| total_gpus=0, | |
| mix_bg=True, | |
| store_in_memory=False, # set to True to speed up a bit of preprocess, but leads to HUGE memory costs (100GB for 5-min video) | |
| force_single_process=False, # turn this on if you find multi-process does not work on your environment | |
| ): | |
| global segmenter | |
| global seg_model | |
| del segmenter | |
| del seg_model | |
| seg_model = MediapipeSegmenter() | |
| segmenter = vision.ImageSegmenter.create_from_options(seg_model.options) | |
| # nerf means that we extract only one video, so can enable multi-process acceleration | |
| multiprocess_enable = nerf and not force_single_process | |
| try: | |
| if "cuda" in device: | |
| # determine which cuda index from subprocess id | |
| pname = multiprocessing.current_process().name | |
| pid = int(pname.rsplit("-", 1)[-1]) - 1 | |
| cuda_id = pid % total_gpus | |
| device = f"cuda:{cuda_id}" | |
| if nerf: # single video | |
| raw_img_dir = video_name.replace(".mp4", "/gt_imgs/").replace("/raw/","/processed/") | |
| else: # whole dataset | |
| raw_img_dir = video_name.replace(".mp4", "").replace("/video/", "/gt_imgs/") | |
| if not os.path.exists(raw_img_dir): | |
| extract_img_job(video_name, raw_img_dir) # use ffmpeg to split video into imgs | |
| img_names = glob.glob(os.path.join(raw_img_dir, "*.jpg")) | |
| img_lst = [] | |
| for img_name in img_names: | |
| if store_in_memory: | |
| img = load_rgb_image_to_path(img_name) | |
| else: | |
| img = img_name | |
| img_lst.append(img) | |
| print("| Extracting Segmaps && Saving...") | |
| args = [] | |
| segmap_mask_lst = [] | |
| # preparing parameters for segment | |
| for i in range(len(img_lst)): | |
| img_name = img_names[i] | |
| img = img_lst[i] | |
| if multiprocess_enable: # create seg_model in subprocesses here | |
| options = seg_model.options | |
| segmenter_arg = None | |
| else: # use seg_model of this process | |
| options = None | |
| segmenter_arg = segmenter | |
| arg = (img_name, img, options, segmenter_arg, store_in_memory) | |
| args.append(arg) | |
| if multiprocess_enable: | |
| for (_, res) in multiprocess_run_tqdm(segment_and_generate_for_image_job, args=args, num_workers=16, desc='generating segment images in multi-processes...'): | |
| segmap_mask = res | |
| segmap_mask_lst.append(segmap_mask) | |
| else: | |
| for index in tqdm.tqdm(range(len(img_lst)), desc="generating segment images in single-process..."): | |
| segmap_mask = segment_and_generate_for_image_job(*args[index]) | |
| segmap_mask_lst.append(segmap_mask) | |
| print("| Extracted Segmaps Done.") | |
| print("| Extracting background...") | |
| bg_prefix_name = f"bg{BG_NAME_MAP[background_method]}" | |
| bg_img = extract_background(img_lst, segmap_mask_lst, method=background_method, device=device, mix_bg=mix_bg) | |
| if nerf: | |
| out_img_name = video_name.replace("/raw/", "/processed/").replace(".mp4", f"/{bg_prefix_name}.jpg") | |
| else: | |
| out_img_name = video_name.replace("/video/", f"/{bg_prefix_name}_img/").replace(".mp4", ".jpg") | |
| save_rgb_image_to_path(bg_img, out_img_name) | |
| print("| Extracted background done.") | |
| print("| Extracting com_imgs...") | |
| com_prefix_name = f"com{BG_NAME_MAP[background_method]}" | |
| for i in tqdm.trange(len(img_names), desc='extracting com_imgs'): | |
| img_name = img_names[i] | |
| com_img = refresh_image(img_lst[i]).copy() | |
| segmap = refresh_segment_mask(segmap_mask_lst[i]) | |
| bg_part = segmap[0].astype(bool)[..., None].repeat(3,axis=-1) | |
| com_img[bg_part] = bg_img[bg_part] | |
| out_img_name = img_name.replace("/gt_imgs/", f"/{com_prefix_name}_imgs/") | |
| save_rgb_image_to_path(com_img, out_img_name) | |
| print("| Extracted com_imgs done.") | |
| return 0 | |
| except Exception as e: | |
| print(str(type(e)), e) | |
| traceback.print_exc(e) | |
| return 1 | |
| def out_exist_job(vid_name, background_method='knn'): | |
| com_prefix_name = f"com{BG_NAME_MAP[background_method]}" | |
| img_dir = vid_name.replace("/video/", "/gt_imgs/").replace(".mp4", "") | |
| out_dir1 = img_dir.replace("/gt_imgs/", "/head_imgs/") | |
| out_dir2 = img_dir.replace("/gt_imgs/", f"/{com_prefix_name}_imgs/") | |
| if os.path.exists(img_dir) and os.path.exists(out_dir1) and os.path.exists(out_dir1) and os.path.exists(out_dir2) : | |
| num_frames = len(os.listdir(img_dir)) | |
| if len(os.listdir(out_dir1)) == num_frames and len(os.listdir(out_dir2)) == num_frames: | |
| return None | |
| else: | |
| return vid_name | |
| else: | |
| return vid_name | |
| def get_todo_vid_names(vid_names, background_method='knn'): | |
| if len(vid_names) == 1: # nerf | |
| return vid_names | |
| todo_vid_names = [] | |
| fn_args = [(vid_name, background_method) for vid_name in vid_names] | |
| for i, res in multiprocess_run_tqdm(out_exist_job, fn_args, num_workers=16, desc="checking todo videos..."): | |
| if res is not None: | |
| todo_vid_names.append(res) | |
| return todo_vid_names | |
| if __name__ == '__main__': | |
| import argparse, glob, tqdm, random | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--vid_dir", default='/home/tiger/datasets/raw/TH1KH_512/video') | |
| parser.add_argument("--ds_name", default='TH1KH_512') | |
| parser.add_argument("--num_workers", default=48, type=int) | |
| parser.add_argument("--seed", default=0, type=int) | |
| parser.add_argument("--process_id", default=0, type=int) | |
| parser.add_argument("--total_process", default=1, type=int) | |
| parser.add_argument("--reset", action='store_true') | |
| parser.add_argument("--load_names", action="store_true") | |
| parser.add_argument("--background_method", choices=['knn', 'mat', 'ddnm', 'lama'], type=str, default='knn') | |
| parser.add_argument("--total_gpus", default=0, type=int) # zero gpus means utilizing cpu | |
| parser.add_argument("--no_mix_bg", action="store_true") | |
| parser.add_argument("--store_in_memory", action="store_true") # set to True to speed up preprocess, but leads to high memory costs | |
| parser.add_argument("--force_single_process", action="store_true") # turn this on if you find multi-process does not work on your environment | |
| args = parser.parse_args() | |
| vid_dir = args.vid_dir | |
| ds_name = args.ds_name | |
| load_names = args.load_names | |
| background_method = args.background_method | |
| total_gpus = args.total_gpus | |
| mix_bg = not args.no_mix_bg | |
| store_in_memory = args.store_in_memory | |
| force_single_process = args.force_single_process | |
| devices = os.environ.get('CUDA_VISIBLE_DEVICES', '').split(",") | |
| for d in devices[:total_gpus]: | |
| os.system(f'pkill -f "voidgpu{d}"') | |
| if ds_name.lower() == 'nerf': # 处理单个视频 | |
| vid_names = [vid_dir] | |
| out_names = [video_name.replace("/raw/", "/processed/").replace(".mp4","_lms.npy") for video_name in vid_names] | |
| else: # 处理整个数据集 | |
| if ds_name in ['lrs3_trainval']: | |
| vid_name_pattern = os.path.join(vid_dir, "*/*.mp4") | |
| elif ds_name in ['TH1KH_512', 'CelebV-HQ']: | |
| vid_name_pattern = os.path.join(vid_dir, "*.mp4") | |
| elif ds_name in ['lrs2', 'lrs3', 'voxceleb2']: | |
| vid_name_pattern = os.path.join(vid_dir, "*/*/*.mp4") | |
| elif ds_name in ["RAVDESS", 'VFHQ']: | |
| vid_name_pattern = os.path.join(vid_dir, "*/*/*/*.mp4") | |
| else: | |
| raise NotImplementedError() | |
| vid_names_path = os.path.join(vid_dir, "vid_names.pkl") | |
| if os.path.exists(vid_names_path) and load_names: | |
| print(f"loading vid names from {vid_names_path}") | |
| vid_names = load_file(vid_names_path) | |
| else: | |
| vid_names = multiprocess_glob(vid_name_pattern) | |
| vid_names = sorted(vid_names) | |
| print(f"saving vid names to {vid_names_path}") | |
| save_file(vid_names_path, vid_names) | |
| vid_names = sorted(vid_names) | |
| random.seed(args.seed) | |
| random.shuffle(vid_names) | |
| process_id = args.process_id | |
| total_process = args.total_process | |
| if total_process > 1: | |
| assert process_id <= total_process -1 | |
| num_samples_per_process = len(vid_names) // total_process | |
| if process_id == total_process: | |
| vid_names = vid_names[process_id * num_samples_per_process : ] | |
| else: | |
| vid_names = vid_names[process_id * num_samples_per_process : (process_id+1) * num_samples_per_process] | |
| if not args.reset: | |
| vid_names = get_todo_vid_names(vid_names, background_method) | |
| print(f"todo videos number: {len(vid_names)}") | |
| device = "cuda" if total_gpus > 0 else "cpu" | |
| extract_job = extract_segment_job | |
| fn_args = [(vid_name, ds_name=='nerf', background_method, device, total_gpus, mix_bg, store_in_memory, force_single_process) for i, vid_name in enumerate(vid_names)] | |
| if ds_name == 'nerf': # 处理单个视频 | |
| extract_job(*fn_args[0]) | |
| else: | |
| for vid_name in multiprocess_run_tqdm(extract_job, fn_args, desc=f"Root process {args.process_id}: segment images", num_workers=args.num_workers): | |
| pass |