|
import torch |
|
import torch.nn as nn |
|
from transformers import AutoConfig, AutoModel |
|
|
|
class DocBERT(nn.Module): |
|
""" |
|
Document classification using BERT with improved architecture |
|
based on Hedwig implementation patterns. |
|
""" |
|
def __init__(self, num_classes, bert_model_name='bert-base-uncased', dropout_prob=0.1, num_categories=1): |
|
super(DocBERT, self).__init__() |
|
|
|
|
|
|
|
self.bert = AutoModel.from_pretrained(bert_model_name) |
|
self.config = AutoConfig.from_pretrained(bert_model_name) |
|
print(f"Model: {bert_model_name}") |
|
print(f"Max Position Embeddings: {self.config.max_position_embeddings}") |
|
|
|
|
|
self.dropout = nn.Dropout(dropout_prob) |
|
|
|
|
|
self.hidden_size = self.config.hidden_size |
|
self.num_categories = num_categories |
|
self.classifier = nn.Linear(self.hidden_size, num_classes*num_categories) |
|
|
|
|
|
self.layer_norm = nn.LayerNorm(self.hidden_size) |
|
|
|
def forward(self, input_ids, attention_mask=None, token_type_ids=None): |
|
""" |
|
Forward pass through the model |
|
""" |
|
|
|
outputs = self.bert(input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids) |
|
|
|
|
|
pooled_output = outputs.pooler_output |
|
|
|
|
|
normalized_output = self.layer_norm(pooled_output) |
|
|
|
|
|
dropped_output = self.dropout(normalized_output) |
|
|
|
|
|
logits = self.classifier(dropped_output) |
|
|
|
return logits |