|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gradio as gr |
|
from fastai.vision.all import * |
|
import skimage |
|
|
|
learn = load_learner('dog_breed_classifier.pkl') |
|
|
|
labels = learn.dls.vocab |
|
def predict(img): |
|
img = PILImage.create(img) |
|
pred,pred_idx,probs = learn.predict(img) |
|
return {labels[i]: float(probs[i]) for i in range(len(labels))} |
|
|
|
title = "Dog Breed Classifier" |
|
description = "A dog breed classifier trained on the Dog Breed dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces." |
|
article="<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>" |
|
examples = ['Chester 14.jpg'] |
|
interpretation='default' |
|
enable_queue=True |
|
|
|
|
|
|
|
|
|
|
|
|
|
gr.Interface( |
|
fn=predict, |
|
inputs=gr.inputs.Image(shape=(512, 512)), |
|
outputs=gr.outputs.Label(num_top_classes=3), |
|
title=title, |
|
description=description, |
|
article=article, |
|
examples=examples, |
|
interpretation=interpretation, |
|
enable_queue=enable_queue |
|
).launch() |
|
|