mpc001 commited on
Commit
c2d564e
1 Parent(s): f972449

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -2
app.py CHANGED
@@ -1,5 +1,6 @@
1
  import os
2
  import gradio as gr
 
3
  from pipelines.pipeline import InferencePipeline
4
 
5
  TITLE = """
@@ -64,6 +65,8 @@ CSS = """
64
  }
65
  """
66
 
 
 
67
  pipelines = {
68
  "VSR(mediapipe)": InferencePipeline("./configs/LRS3_V_WER19.1.ini", device="cpu", face_track=True, detector="mediapipe"),
69
  "ASR": InferencePipeline("./configs/LRS3_A_WER1.0.ini", device="cpu", face_track=True, detector="mediapipe"),
@@ -71,9 +74,15 @@ pipelines = {
71
  }
72
 
73
  def fn(pipeline_type, filename):
 
 
 
 
 
 
74
  selected_pipeline_instance = pipelines[pipeline_type]
75
- landmarks = selected_pipeline_instance.process_landmarks(filename, landmarks_filename=None)
76
- data = selected_pipeline_instance.dataloader.load_data(filename, landmarks)
77
  transcript = selected_pipeline_instance.model.infer(data)
78
  return transcript
79
 
 
1
  import os
2
  import gradio as gr
3
+ from uuid import uuid4
4
  from pipelines.pipeline import InferencePipeline
5
 
6
  TITLE = """
 
65
  }
66
  """
67
 
68
+ FFMPEG_COMMAND = "-loglevel error -y -r 25 -pix_fmt yuv420p -f mp4"
69
+
70
  pipelines = {
71
  "VSR(mediapipe)": InferencePipeline("./configs/LRS3_V_WER19.1.ini", device="cpu", face_track=True, detector="mediapipe"),
72
  "ASR": InferencePipeline("./configs/LRS3_A_WER1.0.ini", device="cpu", face_track=True, detector="mediapipe"),
 
74
  }
75
 
76
  def fn(pipeline_type, filename):
77
+ directory = "./tmp"
78
+ if not os.path.exists(directory):
79
+ os.makedirs(directory)
80
+ dst_filename = os.path.join(directory, str(uuid4())[:8]+".mp4")
81
+ command_string = f"ffmpeg -i {filename} {FFMPEG_COMMAND} {dst_filename}"
82
+ os.system(command_string)
83
  selected_pipeline_instance = pipelines[pipeline_type]
84
+ landmarks = selected_pipeline_instance.process_landmarks(dst_filename, landmarks_filename=None)
85
+ data = selected_pipeline_instance.dataloader.load_data(dst_filename, landmarks)
86
  transcript = selected_pipeline_instance.model.infer(data)
87
  return transcript
88