Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
# Copyright 2019 Shigeki Karita | |
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) | |
import logging | |
import matplotlib.pyplot as plt | |
import numpy | |
from espnet.asr import asr_utils | |
def _plot_and_save_attention(att_w, filename, xtokens=None, ytokens=None): | |
# dynamically import matplotlib due to not found error | |
from matplotlib.ticker import MaxNLocator | |
import os | |
d = os.path.dirname(filename) | |
if not os.path.exists(d): | |
os.makedirs(d) | |
w, h = plt.figaspect(1.0 / len(att_w)) | |
fig = plt.Figure(figsize=(w * 2, h * 2)) | |
axes = fig.subplots(1, len(att_w)) | |
if len(att_w) == 1: | |
axes = [axes] | |
for ax, aw in zip(axes, att_w): | |
# plt.subplot(1, len(att_w), h) | |
ax.imshow(aw.astype(numpy.float32), aspect="auto") | |
ax.set_xlabel("Input") | |
ax.set_ylabel("Output") | |
ax.xaxis.set_major_locator(MaxNLocator(integer=True)) | |
ax.yaxis.set_major_locator(MaxNLocator(integer=True)) | |
# Labels for major ticks | |
if xtokens is not None: | |
ax.set_xticks(numpy.linspace(0, len(xtokens) - 1, len(xtokens))) | |
ax.set_xticks(numpy.linspace(0, len(xtokens) - 1, 1), minor=True) | |
ax.set_xticklabels(xtokens + [""], rotation=40) | |
if ytokens is not None: | |
ax.set_yticks(numpy.linspace(0, len(ytokens) - 1, len(ytokens))) | |
ax.set_yticks(numpy.linspace(0, len(ytokens) - 1, 1), minor=True) | |
ax.set_yticklabels(ytokens + [""]) | |
fig.tight_layout() | |
return fig | |
def savefig(plot, filename): | |
plot.savefig(filename) | |
plt.clf() | |
def plot_multi_head_attention( | |
data, | |
attn_dict, | |
outdir, | |
suffix="png", | |
savefn=savefig, | |
ikey="input", | |
iaxis=0, | |
okey="output", | |
oaxis=0, | |
): | |
"""Plot multi head attentions. | |
:param dict data: utts info from json file | |
:param dict[str, torch.Tensor] attn_dict: multi head attention dict. | |
values should be torch.Tensor (head, input_length, output_length) | |
:param str outdir: dir to save fig | |
:param str suffix: filename suffix including image type (e.g., png) | |
:param savefn: function to save | |
""" | |
for name, att_ws in attn_dict.items(): | |
for idx, att_w in enumerate(att_ws): | |
filename = "%s/%s.%s.%s" % (outdir, data[idx][0], name, suffix) | |
dec_len = int(data[idx][1][okey][oaxis]["shape"][0]) | |
enc_len = int(data[idx][1][ikey][iaxis]["shape"][0]) | |
xtokens, ytokens = None, None | |
if "encoder" in name: | |
att_w = att_w[:, :enc_len, :enc_len] | |
# for MT | |
if "token" in data[idx][1][ikey][iaxis].keys(): | |
xtokens = data[idx][1][ikey][iaxis]["token"].split() | |
ytokens = xtokens[:] | |
elif "decoder" in name: | |
if "self" in name: | |
att_w = att_w[:, : dec_len + 1, : dec_len + 1] # +1 for <sos> | |
else: | |
att_w = att_w[:, : dec_len + 1, :enc_len] # +1 for <sos> | |
# for MT | |
if "token" in data[idx][1][ikey][iaxis].keys(): | |
xtokens = data[idx][1][ikey][iaxis]["token"].split() | |
# for ASR/ST/MT | |
if "token" in data[idx][1][okey][oaxis].keys(): | |
ytokens = ["<sos>"] + data[idx][1][okey][oaxis]["token"].split() | |
if "self" in name: | |
xtokens = ytokens[:] | |
else: | |
logging.warning("unknown name for shaping attention") | |
fig = _plot_and_save_attention(att_w, filename, xtokens, ytokens) | |
savefn(fig, filename) | |
class PlotAttentionReport(asr_utils.PlotAttentionReport): | |
def plotfn(self, *args, **kwargs): | |
kwargs["ikey"] = self.ikey | |
kwargs["iaxis"] = self.iaxis | |
kwargs["okey"] = self.okey | |
kwargs["oaxis"] = self.oaxis | |
plot_multi_head_attention(*args, **kwargs) | |
def __call__(self, trainer): | |
attn_dict = self.get_attention_weights() | |
suffix = "ep.{.updater.epoch}.png".format(trainer) | |
self.plotfn(self.data, attn_dict, self.outdir, suffix, savefig) | |
def get_attention_weights(self): | |
batch = self.converter([self.transform(self.data)], self.device) | |
if isinstance(batch, tuple): | |
att_ws = self.att_vis_fn(*batch) | |
elif isinstance(batch, dict): | |
att_ws = self.att_vis_fn(**batch) | |
return att_ws | |
def log_attentions(self, logger, step): | |
def log_fig(plot, filename): | |
from os.path import basename | |
logger.add_figure(basename(filename), plot, step) | |
plt.clf() | |
attn_dict = self.get_attention_weights() | |
self.plotfn(self.data, attn_dict, self.outdir, "", log_fig) | |