Spaces:
Runtime error
Runtime error
import math | |
import torch.nn as nn | |
import pdb | |
from espnet.nets.pytorch_backend.transformer.convolution import Swish | |
def conv3x3(in_planes, out_planes, stride=1): | |
"""conv3x3. | |
:param in_planes: int, number of channels in the input sequence. | |
:param out_planes: int, number of channels produced by the convolution. | |
:param stride: int, size of the convolving kernel. | |
""" | |
return nn.Conv1d( | |
in_planes, | |
out_planes, | |
kernel_size=3, | |
stride=stride, | |
padding=1, | |
bias=False, | |
) | |
def downsample_basic_block(inplanes, outplanes, stride): | |
"""downsample_basic_block. | |
:param inplanes: int, number of channels in the input sequence. | |
:param outplanes: int, number of channels produced by the convolution. | |
:param stride: int, size of the convolving kernel. | |
""" | |
return nn.Sequential( | |
nn.Conv1d( | |
inplanes, | |
outplanes, | |
kernel_size=1, | |
stride=stride, | |
bias=False, | |
), | |
nn.BatchNorm1d(outplanes), | |
) | |
class BasicBlock1D(nn.Module): | |
expansion = 1 | |
def __init__( | |
self, | |
inplanes, | |
planes, | |
stride=1, | |
downsample=None, | |
relu_type="relu", | |
): | |
"""__init__. | |
:param inplanes: int, number of channels in the input sequence. | |
:param planes: int, number of channels produced by the convolution. | |
:param stride: int, size of the convolving kernel. | |
:param downsample: boolean, if True, the temporal resolution is downsampled. | |
:param relu_type: str, type of activation function. | |
""" | |
super(BasicBlock1D, self).__init__() | |
assert relu_type in ["relu","prelu", "swish"] | |
self.conv1 = conv3x3(inplanes, planes, stride) | |
self.bn1 = nn.BatchNorm1d(planes) | |
# type of ReLU is an input option | |
if relu_type == "relu": | |
self.relu1 = nn.ReLU(inplace=True) | |
self.relu2 = nn.ReLU(inplace=True) | |
elif relu_type == "prelu": | |
self.relu1 = nn.PReLU(num_parameters=planes) | |
self.relu2 = nn.PReLU(num_parameters=planes) | |
elif relu_type == "swish": | |
self.relu1 = Swish() | |
self.relu2 = Swish() | |
else: | |
raise NotImplementedError | |
# -------- | |
self.conv2 = conv3x3(planes, planes) | |
self.bn2 = nn.BatchNorm1d(planes) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
"""forward. | |
:param x: torch.Tensor, input tensor with input size (B, C, T) | |
""" | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu1(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu2(out) | |
return out | |
class ResNet1D(nn.Module): | |
def __init__(self, | |
block, | |
layers, | |
relu_type="swish", | |
a_upsample_ratio=1, | |
): | |
"""__init__. | |
:param block: torch.nn.Module, class of blocks. | |
:param layers: List, customised layers in each block. | |
:param relu_type: str, type of activation function. | |
:param a_upsample_ratio: int, The ratio related to the \ | |
temporal resolution of output features of the frontend. \ | |
a_upsample_ratio=1 produce features with a fps of 25. | |
""" | |
super(ResNet1D, self).__init__() | |
self.inplanes = 64 | |
self.relu_type = relu_type | |
self.downsample_block = downsample_basic_block | |
self.a_upsample_ratio = a_upsample_ratio | |
self.conv1 = nn.Conv1d( | |
in_channels=1, | |
out_channels=self.inplanes, | |
kernel_size=80, | |
stride=4, | |
padding=38, | |
bias=False, | |
) | |
self.bn1 = nn.BatchNorm1d(self.inplanes) | |
if relu_type == "relu": | |
self.relu = nn.ReLU(inplace=True) | |
elif relu_type == "prelu": | |
self.relu = nn.PReLU(num_parameters=self.inplanes) | |
elif relu_type == "swish": | |
self.relu = Swish() | |
self.layer1 = self._make_layer(block, 64, layers[0]) | |
self.layer2 = self._make_layer(block, 128, layers[1], stride=2) | |
self.layer3 = self._make_layer(block, 256, layers[2], stride=2) | |
self.layer4 = self._make_layer(block, 512, layers[3], stride=2) | |
self.avgpool = nn.AvgPool1d( | |
kernel_size=20//self.a_upsample_ratio, | |
stride=20//self.a_upsample_ratio, | |
) | |
def _make_layer(self, block, planes, blocks, stride=1): | |
"""_make_layer. | |
:param block: torch.nn.Module, class of blocks. | |
:param planes: int, number of channels produced by the convolution. | |
:param blocks: int, number of layers in a block. | |
:param stride: int, size of the convolving kernel. | |
""" | |
downsample = None | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
downsample = self.downsample_block( | |
inplanes=self.inplanes, | |
outplanes=planes*block.expansion, | |
stride=stride, | |
) | |
layers = [] | |
layers.append( | |
block( | |
self.inplanes, | |
planes, | |
stride, | |
downsample, | |
relu_type=self.relu_type, | |
) | |
) | |
self.inplanes = planes * block.expansion | |
for i in range(1, blocks): | |
layers.append( | |
block( | |
self.inplanes, | |
planes, | |
relu_type=self.relu_type, | |
) | |
) | |
return nn.Sequential(*layers) | |
def forward(self, x): | |
"""forward. | |
:param x: torch.Tensor, input tensor with input size (B, C, T) | |
""" | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.relu(x) | |
x = self.layer1(x) | |
x = self.layer2(x) | |
x = self.layer3(x) | |
x = self.layer4(x) | |
x = self.avgpool(x) | |
return x | |