Spaces:
Runtime error
Runtime error
#! /usr/bin/env python | |
# -*- coding: utf-8 -*- | |
# Copyright 2023 Imperial College London (Pingchuan Ma) | |
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) | |
import os | |
import datetime | |
import subprocess | |
import gradio as gr | |
from pipelines.pipeline import InferencePipeline | |
FFMPEG_COMMAND = "-loglevel error -y -r 25 -pix_fmt yuv420p -f mp4" | |
pipelines = { | |
"VSR(fast)": InferencePipeline("./configs/LRS3_V_WER19.1.ini", device="cuda:0", face_track=True, detector="mediapipe"), | |
"ASR": InferencePipeline("./configs/LRS3_A_WER1.0.ini", device="cuda:0", face_track=True, detector="retinaface"), | |
"AVSR(fast)": InferencePipeline("./configs/LRS3_AV_WER0.9.ini", device="cuda:0", face_track=True, detector="mediapipe") | |
} | |
print("Step 0. Model has been loaded.") | |
def fn(pipeline_type, filename): | |
directory = "./tmp_video" | |
if not os.path.exists(directory): | |
os.makedirs(directory) | |
print("Step 0. Video has been uploaded.") | |
os.system(command_string) | |
selected_pipeline_instance = pipelines[pipeline_type] | |
print("Step 1. Video has been converted.") | |
landmarks = selected_pipeline_instance.process_landmarks(filename, landmarks_filename=None) | |
print("Step 2. Landmarks have been detected.") | |
data = selected_pipeline_instance.dataloader.load_data(filename, landmarks) | |
print("Step 3. Data has been preprocessed.") | |
transcript = selected_pipeline_instance.model.infer(data) | |
print("Step 4. Inference has been done.") | |
print(f"transcript: {transcript}") | |
return transcript | |
demo = gr.Blocks() | |
with demo: | |
gr.HTML( | |
""" | |
<div style="text-align: center; max-width: 700px; margin: 0 auto;"> | |
<div | |
style=" | |
display: inline-flex; | |
align-items: center; | |
gap: 0.8rem; | |
font-size: 1.75rem; | |
" | |
> | |
<h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;"> | |
Auto-AVSR: Audio-Visual Speech Recognition with Automatic Labels | |
</h1> | |
</div> | |
<p style="margin-bottom: 10px; font-size: 94%"> | |
</p> | |
</div> | |
""" | |
) | |
dropdown_list = gr.inputs.Dropdown(["VSR", "ASR", "AVSR", "VSR(fast)", "AVSR(fast)"], label="model") | |
video_file = gr.Video(label="INPUT VIDEO", include_audio=True) | |
text = gr.Textbox(label="PREDICTION") | |
btn = gr.Button("Submit").style(full_width=True) | |
btn.click(fn, inputs=[dropdown_list, video_file], outputs=text) | |
with gr.Accordion("Additional information", open=False): | |
gr.HTML( | |
""" | |
<div class="acknowledgments"> | |
<p> We used retinaface for training, but for the demo we used mediapipe </p> | |
<p> We share this demo only for non-commercial purposes. </p> | |
</div> | |
""" | |
) | |
demo.launch(share=True) |