auto_avsr / espnet /nets /batch_beam_search.py
mpc001's picture
Upload 125 files
09481f3
raw
history blame
No virus
13.4 kB
"""Parallel beam search module."""
import logging
from typing import Any
from typing import Dict
from typing import List
from typing import NamedTuple
from typing import Tuple
import torch
from torch.nn.utils.rnn import pad_sequence
from espnet.nets.beam_search import BeamSearch
from espnet.nets.beam_search import Hypothesis
class BatchHypothesis(NamedTuple):
"""Batchfied/Vectorized hypothesis data type."""
yseq: torch.Tensor = torch.tensor([]) # (batch, maxlen)
score: torch.Tensor = torch.tensor([]) # (batch,)
length: torch.Tensor = torch.tensor([]) # (batch,)
scores: Dict[str, torch.Tensor] = dict() # values: (batch,)
states: Dict[str, Dict] = dict()
def __len__(self) -> int:
"""Return a batch size."""
return len(self.length)
class BatchBeamSearch(BeamSearch):
"""Batch beam search implementation."""
def batchfy(self, hyps: List[Hypothesis]) -> BatchHypothesis:
"""Convert list to batch."""
if len(hyps) == 0:
return BatchHypothesis()
yseq=pad_sequence(
[h.yseq for h in hyps], batch_first=True, padding_value=self.eos
)
return BatchHypothesis(
yseq=yseq,
length=torch.tensor([len(h.yseq) for h in hyps], dtype=torch.int64, device=yseq.device),
score=torch.tensor([h.score for h in hyps]).to(yseq.device),
scores={k: torch.tensor([h.scores[k] for h in hyps], device=yseq.device) for k in self.scorers},
states={k: [h.states[k] for h in hyps] for k in self.scorers},
)
def _batch_select(self, hyps: BatchHypothesis, ids: List[int]) -> BatchHypothesis:
return BatchHypothesis(
yseq=hyps.yseq[ids],
score=hyps.score[ids],
length=hyps.length[ids],
scores={k: v[ids] for k, v in hyps.scores.items()},
states={
k: [self.scorers[k].select_state(v, i) for i in ids]
for k, v in hyps.states.items()
},
)
def _select(self, hyps: BatchHypothesis, i: int) -> Hypothesis:
return Hypothesis(
yseq=hyps.yseq[i, : hyps.length[i]],
score=hyps.score[i],
scores={k: v[i] for k, v in hyps.scores.items()},
states={
k: self.scorers[k].select_state(v, i) for k, v in hyps.states.items()
},
)
def unbatchfy(self, batch_hyps: BatchHypothesis) -> List[Hypothesis]:
"""Revert batch to list."""
return [
Hypothesis(
yseq=batch_hyps.yseq[i][: batch_hyps.length[i]],
score=batch_hyps.score[i],
scores={k: batch_hyps.scores[k][i] for k in self.scorers},
states={
k: v.select_state(batch_hyps.states[k], i)
for k, v in self.scorers.items()
},
)
for i in range(len(batch_hyps.length))
]
def batch_beam(
self, weighted_scores: torch.Tensor, ids: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""Batch-compute topk full token ids and partial token ids.
Args:
weighted_scores (torch.Tensor): The weighted sum scores for each tokens.
Its shape is `(n_beam, self.vocab_size)`.
ids (torch.Tensor): The partial token ids to compute topk.
Its shape is `(n_beam, self.pre_beam_size)`.
Returns:
Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
The topk full (prev_hyp, new_token) ids
and partial (prev_hyp, new_token) ids.
Their shapes are all `(self.beam_size,)`
"""
top_ids = weighted_scores.view(-1).topk(self.beam_size)[1]
# Because of the flatten above, `top_ids` is organized as:
# [hyp1 * V + token1, hyp2 * V + token2, ..., hypK * V + tokenK],
# where V is `self.n_vocab` and K is `self.beam_size`
prev_hyp_ids = torch.div(top_ids, self.n_vocab, rounding_mode='trunc')
new_token_ids = top_ids % self.n_vocab
return prev_hyp_ids, new_token_ids, prev_hyp_ids, new_token_ids
def init_hyp(self, x: torch.Tensor) -> BatchHypothesis:
"""Get an initial hypothesis data.
Args:
x (torch.Tensor): The encoder output feature
Returns:
Hypothesis: The initial hypothesis.
"""
init_states = dict()
init_scores = dict()
for k, d in self.scorers.items():
init_states[k] = d.batch_init_state(x)
init_scores[k] = 0.0
return self.batchfy(
[
Hypothesis(
score=0.0,
scores=init_scores,
states=init_states,
yseq=torch.tensor([self.sos], device=x.device),
)
]
)
def score_full(
self, hyp: BatchHypothesis, x: torch.Tensor
) -> Tuple[Dict[str, torch.Tensor], Dict[str, Any]]:
"""Score new hypothesis by `self.full_scorers`.
Args:
hyp (Hypothesis): Hypothesis with prefix tokens to score
x (torch.Tensor): Corresponding input feature
Returns:
Tuple[Dict[str, torch.Tensor], Dict[str, Any]]: Tuple of
score dict of `hyp` that has string keys of `self.full_scorers`
and tensor score values of shape: `(self.n_vocab,)`,
and state dict that has string keys
and state values of `self.full_scorers`
"""
scores = dict()
states = dict()
for k, d in self.full_scorers.items():
scores[k], states[k] = d.batch_score(hyp.yseq, hyp.states[k], x)
return scores, states
def score_partial(
self, hyp: BatchHypothesis, ids: torch.Tensor, x: torch.Tensor
) -> Tuple[Dict[str, torch.Tensor], Dict[str, Any]]:
"""Score new hypothesis by `self.full_scorers`.
Args:
hyp (Hypothesis): Hypothesis with prefix tokens to score
ids (torch.Tensor): 2D tensor of new partial tokens to score
x (torch.Tensor): Corresponding input feature
Returns:
Tuple[Dict[str, torch.Tensor], Dict[str, Any]]: Tuple of
score dict of `hyp` that has string keys of `self.full_scorers`
and tensor score values of shape: `(self.n_vocab,)`,
and state dict that has string keys
and state values of `self.full_scorers`
"""
scores = dict()
states = dict()
for k, d in self.part_scorers.items():
scores[k], states[k] = d.batch_score_partial(
hyp.yseq, ids, hyp.states[k], x
)
return scores, states
def merge_states(self, states: Any, part_states: Any, part_idx: int) -> Any:
"""Merge states for new hypothesis.
Args:
states: states of `self.full_scorers`
part_states: states of `self.part_scorers`
part_idx (int): The new token id for `part_scores`
Returns:
Dict[str, torch.Tensor]: The new score dict.
Its keys are names of `self.full_scorers` and `self.part_scorers`.
Its values are states of the scorers.
"""
new_states = dict()
for k, v in states.items():
new_states[k] = v
for k, v in part_states.items():
new_states[k] = v
return new_states
def search(self, running_hyps: BatchHypothesis, x: torch.Tensor) -> BatchHypothesis:
"""Search new tokens for running hypotheses and encoded speech x.
Args:
running_hyps (BatchHypothesis): Running hypotheses on beam
x (torch.Tensor): Encoded speech feature (T, D)
Returns:
BatchHypothesis: Best sorted hypotheses
"""
n_batch = len(running_hyps)
part_ids = None # no pre-beam
# batch scoring
weighted_scores = torch.zeros(
n_batch, self.n_vocab, dtype=x.dtype, device=x.device
)
scores, states = self.score_full(running_hyps, x.expand(n_batch, *x.shape))
for k in self.full_scorers:
weighted_scores += self.weights[k] * scores[k]
# partial scoring
if self.do_pre_beam:
pre_beam_scores = (
weighted_scores
if self.pre_beam_score_key == "full"
else scores[self.pre_beam_score_key]
)
part_ids = torch.topk(pre_beam_scores, self.pre_beam_size, dim=-1)[1]
# NOTE(takaaki-hori): Unlike BeamSearch, we assume that score_partial returns
# full-size score matrices, which has non-zero scores for part_ids and zeros
# for others.
part_scores, part_states = self.score_partial(running_hyps, part_ids, x)
for k in self.part_scorers:
weighted_scores += self.weights[k] * part_scores[k]
# add previous hyp scores
weighted_scores += running_hyps.score.to(
dtype=x.dtype, device=x.device
).unsqueeze(1)
# TODO(karita): do not use list. use batch instead
# see also https://github.com/espnet/espnet/pull/1402#discussion_r354561029
# update hyps
best_hyps = []
prev_hyps = self.unbatchfy(running_hyps)
for (
full_prev_hyp_id,
full_new_token_id,
part_prev_hyp_id,
part_new_token_id,
) in zip(*self.batch_beam(weighted_scores, part_ids)):
prev_hyp = prev_hyps[full_prev_hyp_id]
best_hyps.append(
Hypothesis(
score=weighted_scores[full_prev_hyp_id, full_new_token_id],
yseq=self.append_token(prev_hyp.yseq, full_new_token_id),
scores=self.merge_scores(
prev_hyp.scores,
{k: v[full_prev_hyp_id] for k, v in scores.items()},
full_new_token_id,
{k: v[part_prev_hyp_id] for k, v in part_scores.items()},
part_new_token_id,
),
states=self.merge_states(
{
k: self.full_scorers[k].select_state(v, full_prev_hyp_id)
for k, v in states.items()
},
{
k: self.part_scorers[k].select_state(
v, part_prev_hyp_id, part_new_token_id
)
for k, v in part_states.items()
},
part_new_token_id,
),
)
)
return self.batchfy(best_hyps)
def post_process(
self,
i: int,
maxlen: int,
maxlenratio: float,
running_hyps: BatchHypothesis,
ended_hyps: List[Hypothesis],
) -> BatchHypothesis:
"""Perform post-processing of beam search iterations.
Args:
i (int): The length of hypothesis tokens.
maxlen (int): The maximum length of tokens in beam search.
maxlenratio (int): The maximum length ratio in beam search.
running_hyps (BatchHypothesis): The running hypotheses in beam search.
ended_hyps (List[Hypothesis]): The ended hypotheses in beam search.
Returns:
BatchHypothesis: The new running hypotheses.
"""
n_batch = running_hyps.yseq.shape[0]
logging.debug(f"the number of running hypothes: {n_batch}")
if self.token_list is not None:
logging.debug(
"best hypo: "
+ "".join(
[
self.token_list[x]
for x in running_hyps.yseq[0, 1 : running_hyps.length[0]]
]
)
)
# add eos in the final loop to avoid that there are no ended hyps
if i == maxlen - 1:
logging.info("adding <eos> in the last position in the loop")
yseq_eos = torch.cat(
(
running_hyps.yseq,
torch.full(
(n_batch, 1),
self.eos,
device=running_hyps.yseq.device,
dtype=torch.int64,
),
),
1,
)
running_hyps.yseq.resize_as_(yseq_eos)
running_hyps.yseq[:] = yseq_eos
running_hyps.length[:] = yseq_eos.shape[1]
# add ended hypotheses to a final list, and removed them from current hypotheses
# (this will be a probmlem, number of hyps < beam)
is_eos = (
running_hyps.yseq[torch.arange(n_batch), running_hyps.length - 1]
== self.eos
)
for b in torch.nonzero(is_eos, as_tuple=False).view(-1):
hyp = self._select(running_hyps, b)
ended_hyps.append(hyp)
remained_ids = torch.nonzero(is_eos == 0, as_tuple=False).view(-1)
return self._batch_select(running_hyps, remained_ids)