auto_avsr / espnet /asr /asr_utils.py
mpc001's picture
Upload 125 files
09481f3
raw
history blame
33.5 kB
# Copyright 2017 Johns Hopkins University (Shinji Watanabe)
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
import argparse
import copy
import json
import logging
import os
import shutil
import tempfile
import numpy as np
import torch
# * -------------------- training iterator related -------------------- *
class CompareValueTrigger(object):
"""Trigger invoked when key value getting bigger or lower than before.
Args:
key (str) : Key of value.
compare_fn ((float, float) -> bool) : Function to compare the values.
trigger (tuple(int, str)) : Trigger that decide the comparison interval.
"""
def __init__(self, key, compare_fn, trigger=(1, "epoch")):
from chainer import training
self._key = key
self._best_value = None
self._interval_trigger = training.util.get_trigger(trigger)
self._init_summary()
self._compare_fn = compare_fn
def __call__(self, trainer):
"""Get value related to the key and compare with current value."""
observation = trainer.observation
summary = self._summary
key = self._key
if key in observation:
summary.add({key: observation[key]})
if not self._interval_trigger(trainer):
return False
stats = summary.compute_mean()
value = float(stats[key]) # copy to CPU
self._init_summary()
if self._best_value is None:
# initialize best value
self._best_value = value
return False
elif self._compare_fn(self._best_value, value):
return True
else:
self._best_value = value
return False
def _init_summary(self):
import chainer
self._summary = chainer.reporter.DictSummary()
try:
from chainer.training import extension
except ImportError:
PlotAttentionReport = None
else:
class PlotAttentionReport(extension.Extension):
"""Plot attention reporter.
Args:
att_vis_fn (espnet.nets.*_backend.e2e_asr.E2E.calculate_all_attentions):
Function of attention visualization.
data (list[tuple(str, dict[str, list[Any]])]): List json utt key items.
outdir (str): Directory to save figures.
converter (espnet.asr.*_backend.asr.CustomConverter):
Function to convert data.
device (int | torch.device): Device.
reverse (bool): If True, input and output length are reversed.
ikey (str): Key to access input
(for ASR/ST ikey="input", for MT ikey="output".)
iaxis (int): Dimension to access input
(for ASR/ST iaxis=0, for MT iaxis=1.)
okey (str): Key to access output
(for ASR/ST okey="input", MT okay="output".)
oaxis (int): Dimension to access output
(for ASR/ST oaxis=0, for MT oaxis=0.)
subsampling_factor (int): subsampling factor in encoder
"""
def __init__(
self,
att_vis_fn,
data,
outdir,
converter,
transform,
device,
reverse=False,
ikey="input",
iaxis=0,
okey="output",
oaxis=0,
subsampling_factor=1,
):
self.att_vis_fn = att_vis_fn
self.data = copy.deepcopy(data)
self.data_dict = {k: v for k, v in copy.deepcopy(data)}
# key is utterance ID
self.outdir = outdir
self.converter = converter
self.transform = transform
self.device = device
self.reverse = reverse
self.ikey = ikey
self.iaxis = iaxis
self.okey = okey
self.oaxis = oaxis
self.factor = subsampling_factor
if not os.path.exists(self.outdir):
os.makedirs(self.outdir)
def __call__(self, trainer):
"""Plot and save image file of att_ws matrix."""
att_ws, uttid_list = self.get_attention_weights()
if isinstance(att_ws, list): # multi-encoder case
num_encs = len(att_ws) - 1
# atts
for i in range(num_encs):
for idx, att_w in enumerate(att_ws[i]):
filename = "%s/%s.ep.{.updater.epoch}.att%d.png" % (
self.outdir,
uttid_list[idx],
i + 1,
)
att_w = self.trim_attention_weight(uttid_list[idx], att_w)
np_filename = "%s/%s.ep.{.updater.epoch}.att%d.npy" % (
self.outdir,
uttid_list[idx],
i + 1,
)
np.save(np_filename.format(trainer), att_w)
self._plot_and_save_attention(att_w, filename.format(trainer))
# han
for idx, att_w in enumerate(att_ws[num_encs]):
filename = "%s/%s.ep.{.updater.epoch}.han.png" % (
self.outdir,
uttid_list[idx],
)
att_w = self.trim_attention_weight(uttid_list[idx], att_w)
np_filename = "%s/%s.ep.{.updater.epoch}.han.npy" % (
self.outdir,
uttid_list[idx],
)
np.save(np_filename.format(trainer), att_w)
self._plot_and_save_attention(
att_w, filename.format(trainer), han_mode=True
)
else:
for idx, att_w in enumerate(att_ws):
filename = "%s/%s.ep.{.updater.epoch}.png" % (
self.outdir,
uttid_list[idx],
)
att_w = self.trim_attention_weight(uttid_list[idx], att_w)
np_filename = "%s/%s.ep.{.updater.epoch}.npy" % (
self.outdir,
uttid_list[idx],
)
np.save(np_filename.format(trainer), att_w)
self._plot_and_save_attention(att_w, filename.format(trainer))
def log_attentions(self, logger, step):
"""Add image files of att_ws matrix to the tensorboard."""
att_ws, uttid_list = self.get_attention_weights()
if isinstance(att_ws, list): # multi-encoder case
num_encs = len(att_ws) - 1
# atts
for i in range(num_encs):
for idx, att_w in enumerate(att_ws[i]):
att_w = self.trim_attention_weight(uttid_list[idx], att_w)
plot = self.draw_attention_plot(att_w)
logger.add_figure(
"%s_att%d" % (uttid_list[idx], i + 1),
plot.gcf(),
step,
)
# han
for idx, att_w in enumerate(att_ws[num_encs]):
att_w = self.trim_attention_weight(uttid_list[idx], att_w)
plot = self.draw_han_plot(att_w)
logger.add_figure(
"%s_han" % (uttid_list[idx]),
plot.gcf(),
step,
)
else:
for idx, att_w in enumerate(att_ws):
att_w = self.trim_attention_weight(uttid_list[idx], att_w)
plot = self.draw_attention_plot(att_w)
logger.add_figure("%s" % (uttid_list[idx]), plot.gcf(), step)
def get_attention_weights(self):
"""Return attention weights.
Returns:
numpy.ndarray: attention weights. float. Its shape would be
differ from backend.
* pytorch-> 1) multi-head case => (B, H, Lmax, Tmax), 2)
other case => (B, Lmax, Tmax).
* chainer-> (B, Lmax, Tmax)
"""
return_batch, uttid_list = self.transform(self.data, return_uttid=True)
batch = self.converter([return_batch], self.device)
if isinstance(batch, tuple):
att_ws = self.att_vis_fn(*batch)
else:
att_ws = self.att_vis_fn(**batch)
return att_ws, uttid_list
def trim_attention_weight(self, uttid, att_w):
"""Transform attention matrix with regard to self.reverse."""
if self.reverse:
enc_key, enc_axis = self.okey, self.oaxis
dec_key, dec_axis = self.ikey, self.iaxis
else:
enc_key, enc_axis = self.ikey, self.iaxis
dec_key, dec_axis = self.okey, self.oaxis
dec_len = int(self.data_dict[uttid][dec_key][dec_axis]["shape"][0])
enc_len = int(self.data_dict[uttid][enc_key][enc_axis]["shape"][0])
if self.factor > 1:
enc_len //= self.factor
if len(att_w.shape) == 3:
att_w = att_w[:, :dec_len, :enc_len]
else:
att_w = att_w[:dec_len, :enc_len]
return att_w
def draw_attention_plot(self, att_w):
"""Plot the att_w matrix.
Returns:
matplotlib.pyplot: pyplot object with attention matrix image.
"""
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
plt.clf()
att_w = att_w.astype(np.float32)
if len(att_w.shape) == 3:
for h, aw in enumerate(att_w, 1):
plt.subplot(1, len(att_w), h)
plt.imshow(aw, aspect="auto")
plt.xlabel("Encoder Index")
plt.ylabel("Decoder Index")
else:
plt.imshow(att_w, aspect="auto")
plt.xlabel("Encoder Index")
plt.ylabel("Decoder Index")
plt.tight_layout()
return plt
def draw_han_plot(self, att_w):
"""Plot the att_w matrix for hierarchical attention.
Returns:
matplotlib.pyplot: pyplot object with attention matrix image.
"""
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
plt.clf()
if len(att_w.shape) == 3:
for h, aw in enumerate(att_w, 1):
legends = []
plt.subplot(1, len(att_w), h)
for i in range(aw.shape[1]):
plt.plot(aw[:, i])
legends.append("Att{}".format(i))
plt.ylim([0, 1.0])
plt.xlim([0, aw.shape[0]])
plt.grid(True)
plt.ylabel("Attention Weight")
plt.xlabel("Decoder Index")
plt.legend(legends)
else:
legends = []
for i in range(att_w.shape[1]):
plt.plot(att_w[:, i])
legends.append("Att{}".format(i))
plt.ylim([0, 1.0])
plt.xlim([0, att_w.shape[0]])
plt.grid(True)
plt.ylabel("Attention Weight")
plt.xlabel("Decoder Index")
plt.legend(legends)
plt.tight_layout()
return plt
def _plot_and_save_attention(self, att_w, filename, han_mode=False):
if han_mode:
plt = self.draw_han_plot(att_w)
else:
plt = self.draw_attention_plot(att_w)
plt.savefig(filename)
plt.close()
try:
from chainer.training import extension
except ImportError:
PlotCTCReport = None
else:
class PlotCTCReport(extension.Extension):
"""Plot CTC reporter.
Args:
ctc_vis_fn (espnet.nets.*_backend.e2e_asr.E2E.calculate_all_ctc_probs):
Function of CTC visualization.
data (list[tuple(str, dict[str, list[Any]])]): List json utt key items.
outdir (str): Directory to save figures.
converter (espnet.asr.*_backend.asr.CustomConverter):
Function to convert data.
device (int | torch.device): Device.
reverse (bool): If True, input and output length are reversed.
ikey (str): Key to access input
(for ASR/ST ikey="input", for MT ikey="output".)
iaxis (int): Dimension to access input
(for ASR/ST iaxis=0, for MT iaxis=1.)
okey (str): Key to access output
(for ASR/ST okey="input", MT okay="output".)
oaxis (int): Dimension to access output
(for ASR/ST oaxis=0, for MT oaxis=0.)
subsampling_factor (int): subsampling factor in encoder
"""
def __init__(
self,
ctc_vis_fn,
data,
outdir,
converter,
transform,
device,
reverse=False,
ikey="input",
iaxis=0,
okey="output",
oaxis=0,
subsampling_factor=1,
):
self.ctc_vis_fn = ctc_vis_fn
self.data = copy.deepcopy(data)
self.data_dict = {k: v for k, v in copy.deepcopy(data)}
# key is utterance ID
self.outdir = outdir
self.converter = converter
self.transform = transform
self.device = device
self.reverse = reverse
self.ikey = ikey
self.iaxis = iaxis
self.okey = okey
self.oaxis = oaxis
self.factor = subsampling_factor
if not os.path.exists(self.outdir):
os.makedirs(self.outdir)
def __call__(self, trainer):
"""Plot and save image file of ctc prob."""
ctc_probs, uttid_list = self.get_ctc_probs()
if isinstance(ctc_probs, list): # multi-encoder case
num_encs = len(ctc_probs) - 1
for i in range(num_encs):
for idx, ctc_prob in enumerate(ctc_probs[i]):
filename = "%s/%s.ep.{.updater.epoch}.ctc%d.png" % (
self.outdir,
uttid_list[idx],
i + 1,
)
ctc_prob = self.trim_ctc_prob(uttid_list[idx], ctc_prob)
np_filename = "%s/%s.ep.{.updater.epoch}.ctc%d.npy" % (
self.outdir,
uttid_list[idx],
i + 1,
)
np.save(np_filename.format(trainer), ctc_prob)
self._plot_and_save_ctc(ctc_prob, filename.format(trainer))
else:
for idx, ctc_prob in enumerate(ctc_probs):
filename = "%s/%s.ep.{.updater.epoch}.png" % (
self.outdir,
uttid_list[idx],
)
ctc_prob = self.trim_ctc_prob(uttid_list[idx], ctc_prob)
np_filename = "%s/%s.ep.{.updater.epoch}.npy" % (
self.outdir,
uttid_list[idx],
)
np.save(np_filename.format(trainer), ctc_prob)
self._plot_and_save_ctc(ctc_prob, filename.format(trainer))
def log_ctc_probs(self, logger, step):
"""Add image files of ctc probs to the tensorboard."""
ctc_probs, uttid_list = self.get_ctc_probs()
if isinstance(ctc_probs, list): # multi-encoder case
num_encs = len(ctc_probs) - 1
for i in range(num_encs):
for idx, ctc_prob in enumerate(ctc_probs[i]):
ctc_prob = self.trim_ctc_prob(uttid_list[idx], ctc_prob)
plot = self.draw_ctc_plot(ctc_prob)
logger.add_figure(
"%s_ctc%d" % (uttid_list[idx], i + 1),
plot.gcf(),
step,
)
else:
for idx, ctc_prob in enumerate(ctc_probs):
ctc_prob = self.trim_ctc_prob(uttid_list[idx], ctc_prob)
plot = self.draw_ctc_plot(ctc_prob)
logger.add_figure("%s" % (uttid_list[idx]), plot.gcf(), step)
def get_ctc_probs(self):
"""Return CTC probs.
Returns:
numpy.ndarray: CTC probs. float. Its shape would be
differ from backend. (B, Tmax, vocab).
"""
return_batch, uttid_list = self.transform(self.data, return_uttid=True)
batch = self.converter([return_batch], self.device)
if isinstance(batch, tuple):
probs = self.ctc_vis_fn(*batch)
else:
probs = self.ctc_vis_fn(**batch)
return probs, uttid_list
def trim_ctc_prob(self, uttid, prob):
"""Trim CTC posteriors accoding to input lengths."""
enc_len = int(self.data_dict[uttid][self.ikey][self.iaxis]["shape"][0])
if self.factor > 1:
enc_len //= self.factor
prob = prob[:enc_len]
return prob
def draw_ctc_plot(self, ctc_prob):
"""Plot the ctc_prob matrix.
Returns:
matplotlib.pyplot: pyplot object with CTC prob matrix image.
"""
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
ctc_prob = ctc_prob.astype(np.float32)
plt.clf()
topk_ids = np.argsort(ctc_prob, axis=1)
n_frames, vocab = ctc_prob.shape
times_probs = np.arange(n_frames)
plt.figure(figsize=(20, 8))
# NOTE: index 0 is reserved for blank
for idx in set(topk_ids.reshape(-1).tolist()):
if idx == 0:
plt.plot(
times_probs, ctc_prob[:, 0], ":", label="<blank>", color="grey"
)
else:
plt.plot(times_probs, ctc_prob[:, idx])
plt.xlabel("Input [frame]", fontsize=12)
plt.ylabel("Posteriors", fontsize=12)
plt.xticks(list(range(0, int(n_frames) + 1, 10)))
plt.yticks(list(range(0, 2, 1)))
plt.tight_layout()
return plt
def _plot_and_save_ctc(self, ctc_prob, filename):
plt = self.draw_ctc_plot(ctc_prob)
plt.savefig(filename)
plt.close()
def restore_snapshot(model, snapshot, load_fn=None):
"""Extension to restore snapshot.
Returns:
An extension function.
"""
import chainer
from chainer import training
if load_fn is None:
load_fn = chainer.serializers.load_npz
@training.make_extension(trigger=(1, "epoch"))
def restore_snapshot(trainer):
_restore_snapshot(model, snapshot, load_fn)
return restore_snapshot
def _restore_snapshot(model, snapshot, load_fn=None):
if load_fn is None:
import chainer
load_fn = chainer.serializers.load_npz
load_fn(snapshot, model)
logging.info("restored from " + str(snapshot))
def adadelta_eps_decay(eps_decay):
"""Extension to perform adadelta eps decay.
Args:
eps_decay (float): Decay rate of eps.
Returns:
An extension function.
"""
from chainer import training
@training.make_extension(trigger=(1, "epoch"))
def adadelta_eps_decay(trainer):
_adadelta_eps_decay(trainer, eps_decay)
return adadelta_eps_decay
def _adadelta_eps_decay(trainer, eps_decay):
optimizer = trainer.updater.get_optimizer("main")
# for chainer
if hasattr(optimizer, "eps"):
current_eps = optimizer.eps
setattr(optimizer, "eps", current_eps * eps_decay)
logging.info("adadelta eps decayed to " + str(optimizer.eps))
# pytorch
else:
for p in optimizer.param_groups:
p["eps"] *= eps_decay
logging.info("adadelta eps decayed to " + str(p["eps"]))
def adam_lr_decay(eps_decay):
"""Extension to perform adam lr decay.
Args:
eps_decay (float): Decay rate of lr.
Returns:
An extension function.
"""
from chainer import training
@training.make_extension(trigger=(1, "epoch"))
def adam_lr_decay(trainer):
_adam_lr_decay(trainer, eps_decay)
return adam_lr_decay
def _adam_lr_decay(trainer, eps_decay):
optimizer = trainer.updater.get_optimizer("main")
# for chainer
if hasattr(optimizer, "lr"):
current_lr = optimizer.lr
setattr(optimizer, "lr", current_lr * eps_decay)
logging.info("adam lr decayed to " + str(optimizer.lr))
# pytorch
else:
for p in optimizer.param_groups:
p["lr"] *= eps_decay
logging.info("adam lr decayed to " + str(p["lr"]))
def torch_snapshot(savefun=torch.save, filename="snapshot.ep.{.updater.epoch}"):
"""Extension to take snapshot of the trainer for pytorch.
Returns:
An extension function.
"""
from chainer.training import extension
@extension.make_extension(trigger=(1, "epoch"), priority=-100)
def torch_snapshot(trainer):
_torch_snapshot_object(trainer, trainer, filename.format(trainer), savefun)
return torch_snapshot
def _torch_snapshot_object(trainer, target, filename, savefun):
from chainer.serializers import DictionarySerializer
# make snapshot_dict dictionary
s = DictionarySerializer()
s.save(trainer)
if hasattr(trainer.updater.model, "model"):
# (for TTS)
if hasattr(trainer.updater.model.model, "module"):
model_state_dict = trainer.updater.model.model.module.state_dict()
else:
model_state_dict = trainer.updater.model.model.state_dict()
else:
# (for ASR)
if hasattr(trainer.updater.model, "module"):
model_state_dict = trainer.updater.model.module.state_dict()
else:
model_state_dict = trainer.updater.model.state_dict()
snapshot_dict = {
"trainer": s.target,
"model": model_state_dict,
"optimizer": trainer.updater.get_optimizer("main").state_dict(),
}
# save snapshot dictionary
fn = filename.format(trainer)
prefix = "tmp" + fn
tmpdir = tempfile.mkdtemp(prefix=prefix, dir=trainer.out)
tmppath = os.path.join(tmpdir, fn)
try:
savefun(snapshot_dict, tmppath)
shutil.move(tmppath, os.path.join(trainer.out, fn))
finally:
shutil.rmtree(tmpdir)
def add_gradient_noise(model, iteration, duration=100, eta=1.0, scale_factor=0.55):
"""Adds noise from a standard normal distribution to the gradients.
The standard deviation (`sigma`) is controlled by the three hyper-parameters below.
`sigma` goes to zero (no noise) with more iterations.
Args:
model (torch.nn.model): Model.
iteration (int): Number of iterations.
duration (int) {100, 1000}:
Number of durations to control the interval of the `sigma` change.
eta (float) {0.01, 0.3, 1.0}: The magnitude of `sigma`.
scale_factor (float) {0.55}: The scale of `sigma`.
"""
interval = (iteration // duration) + 1
sigma = eta / interval**scale_factor
for param in model.parameters():
if param.grad is not None:
_shape = param.grad.size()
noise = sigma * torch.randn(_shape).to(param.device)
param.grad += noise
# * -------------------- general -------------------- *
def get_model_conf(model_path, conf_path=None):
"""Get model config information by reading a model config file (model.json).
Args:
model_path (str): Model path.
conf_path (str): Optional model config path.
Returns:
list[int, int, dict[str, Any]]: Config information loaded from json file.
"""
if conf_path is None:
model_conf = os.path.dirname(model_path) + "/model.json"
else:
model_conf = conf_path
with open(model_conf, "rb") as f:
logging.info("reading a config file from " + model_conf)
confs = json.load(f)
if isinstance(confs, dict):
# for lm
args = confs
return argparse.Namespace(**args)
else:
# for asr, tts, mt
idim, odim, args = confs
return idim, odim, argparse.Namespace(**args)
def chainer_load(path, model):
"""Load chainer model parameters.
Args:
path (str): Model path or snapshot file path to be loaded.
model (chainer.Chain): Chainer model.
"""
import chainer
if "snapshot" in os.path.basename(path):
chainer.serializers.load_npz(path, model, path="updater/model:main/")
else:
chainer.serializers.load_npz(path, model)
def torch_save(path, model):
"""Save torch model states.
Args:
path (str): Model path to be saved.
model (torch.nn.Module): Torch model.
"""
if hasattr(model, "module"):
torch.save(model.module.state_dict(), path)
else:
torch.save(model.state_dict(), path)
def snapshot_object(target, filename):
"""Returns a trainer extension to take snapshots of a given object.
Args:
target (model): Object to serialize.
filename (str): Name of the file into which the object is serialized.It can
be a format string, where the trainer object is passed to
the :meth: `str.format` method. For example,
``'snapshot_{.updater.iteration}'`` is converted to
``'snapshot_10000'`` at the 10,000th iteration.
Returns:
An extension function.
"""
from chainer.training import extension
@extension.make_extension(trigger=(1, "epoch"), priority=-100)
def snapshot_object(trainer):
torch_save(os.path.join(trainer.out, filename.format(trainer)), target)
return snapshot_object
def torch_load(path, model):
"""Load torch model states.
Args:
path (str): Model path or snapshot file path to be loaded.
model (torch.nn.Module): Torch model.
"""
if "snapshot" in os.path.basename(path):
model_state_dict = torch.load(path, map_location=lambda storage, loc: storage)[
"model"
]
else:
model_state_dict = torch.load(path, map_location=lambda storage, loc: storage)
if hasattr(model, "module"):
model.module.load_state_dict(model_state_dict)
else:
model.load_state_dict(model_state_dict)
del model_state_dict
def torch_resume(snapshot_path, trainer):
"""Resume from snapshot for pytorch.
Args:
snapshot_path (str): Snapshot file path.
trainer (chainer.training.Trainer): Chainer's trainer instance.
"""
from chainer.serializers import NpzDeserializer
# load snapshot
snapshot_dict = torch.load(snapshot_path, map_location=lambda storage, loc: storage)
# restore trainer states
d = NpzDeserializer(snapshot_dict["trainer"])
d.load(trainer)
# restore model states
if hasattr(trainer.updater.model, "model"):
# (for TTS model)
if hasattr(trainer.updater.model.model, "module"):
trainer.updater.model.model.module.load_state_dict(snapshot_dict["model"])
else:
trainer.updater.model.model.load_state_dict(snapshot_dict["model"])
else:
# (for ASR model)
if hasattr(trainer.updater.model, "module"):
trainer.updater.model.module.load_state_dict(snapshot_dict["model"])
else:
trainer.updater.model.load_state_dict(snapshot_dict["model"])
# retore optimizer states
trainer.updater.get_optimizer("main").load_state_dict(snapshot_dict["optimizer"])
# delete opened snapshot
del snapshot_dict
# * ------------------ recognition related ------------------ *
def parse_hypothesis(hyp, char_list):
"""Parse hypothesis.
Args:
hyp (list[dict[str, Any]]): Recognition hypothesis.
char_list (list[str]): List of characters.
Returns:
tuple(str, str, str, float)
"""
# remove sos and get results
tokenid_as_list = list(map(int, hyp["yseq"][1:]))
token_as_list = [char_list[idx] for idx in tokenid_as_list]
score = float(hyp["score"])
# convert to string
tokenid = " ".join([str(idx) for idx in tokenid_as_list])
token = " ".join(token_as_list)
text = "".join(token_as_list).replace("<space>", " ")
return text, token, tokenid, score
def add_results_to_json(nbest_hyps, char_list):
"""Add N-best results to json.
Args:
js (dict[str, Any]): Groundtruth utterance dict.
nbest_hyps_sd (list[dict[str, Any]]):
List of hypothesis for multi_speakers: nutts x nspkrs.
char_list (list[str]): List of characters.
Returns:
str: 1-best result
"""
assert len(nbest_hyps) == 1, "only 1-best result is supported."
# parse hypothesis
rec_text, rec_token, rec_tokenid, score = parse_hypothesis(nbest_hyps[0], char_list)
return rec_text
def plot_spectrogram(
plt,
spec,
mode="db",
fs=None,
frame_shift=None,
bottom=True,
left=True,
right=True,
top=False,
labelbottom=True,
labelleft=True,
labelright=True,
labeltop=False,
cmap="inferno",
):
"""Plot spectrogram using matplotlib.
Args:
plt (matplotlib.pyplot): pyplot object.
spec (numpy.ndarray): Input stft (Freq, Time)
mode (str): db or linear.
fs (int): Sample frequency. To convert y-axis to kHz unit.
frame_shift (int): The frame shift of stft. To convert x-axis to second unit.
bottom (bool):Whether to draw the respective ticks.
left (bool):
right (bool):
top (bool):
labelbottom (bool):Whether to draw the respective tick labels.
labelleft (bool):
labelright (bool):
labeltop (bool):
cmap (str): Colormap defined in matplotlib.
"""
spec = np.abs(spec)
if mode == "db":
x = 20 * np.log10(spec + np.finfo(spec.dtype).eps)
elif mode == "linear":
x = spec
else:
raise ValueError(mode)
if fs is not None:
ytop = fs / 2000
ylabel = "kHz"
else:
ytop = x.shape[0]
ylabel = "bin"
if frame_shift is not None and fs is not None:
xtop = x.shape[1] * frame_shift / fs
xlabel = "s"
else:
xtop = x.shape[1]
xlabel = "frame"
extent = (0, xtop, 0, ytop)
plt.imshow(x[::-1], cmap=cmap, extent=extent)
if labelbottom:
plt.xlabel("time [{}]".format(xlabel))
if labelleft:
plt.ylabel("freq [{}]".format(ylabel))
plt.colorbar().set_label("{}".format(mode))
plt.tick_params(
bottom=bottom,
left=left,
right=right,
top=top,
labelbottom=labelbottom,
labelleft=labelleft,
labelright=labelright,
labeltop=labeltop,
)
plt.axis("auto")
# * ------------------ recognition related ------------------ *
def format_mulenc_args(args):
"""Format args for multi-encoder setup.
It deals with following situations: (when args.num_encs=2):
1. args.elayers = None -> args.elayers = [4, 4];
2. args.elayers = 4 -> args.elayers = [4, 4];
3. args.elayers = [4, 4, 4] -> args.elayers = [4, 4].
"""
# default values when None is assigned.
default_dict = {
"etype": "blstmp",
"elayers": 4,
"eunits": 300,
"subsample": "1",
"dropout_rate": 0.0,
"atype": "dot",
"adim": 320,
"awin": 5,
"aheads": 4,
"aconv_chans": -1,
"aconv_filts": 100,
}
for k in default_dict.keys():
if isinstance(vars(args)[k], list):
if len(vars(args)[k]) != args.num_encs:
logging.warning(
"Length mismatch {}: Convert {} to {}.".format(
k, vars(args)[k], vars(args)[k][: args.num_encs]
)
)
vars(args)[k] = vars(args)[k][: args.num_encs]
else:
if not vars(args)[k]:
# assign default value if it is None
vars(args)[k] = default_dict[k]
logging.warning(
"{} is not specified, use default value {}.".format(
k, default_dict[k]
)
)
# duplicate
logging.warning(
"Type mismatch {}: Convert {} to {}.".format(
k, vars(args)[k], [vars(args)[k] for _ in range(args.num_encs)]
)
)
vars(args)[k] = [vars(args)[k] for _ in range(args.num_encs)]
return args