LayoutLMv3_for_recepits2 / inference.py
mp-02's picture
Update inference.py
9b9b439 verified
raw
history blame
3.04 kB
import torch
import numpy as np
from transformers import LayoutLMv3TokenizerFast, LayoutLMv3Processor, LayoutLMv3ForTokenClassification
from PIL import Image, ImageDraw, ImageFont
from utils import OCR, unnormalize_box
tokenizer = LayoutLMv3TokenizerFast.from_pretrained("mp-02/layoutlmv3-base-cord-sroie", apply_ocr=False)
processor = LayoutLMv3Processor.from_pretrained("mp-02/layoutlmv3-base-cord-sroie", apply_ocr=False)
model = LayoutLMv3ForTokenClassification.from_pretrained("mp-02/layoutlmv3-base-cord-sroie")
id2label = model.config.id2label
label2id = model.config.label2id
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
import json
def prediction(image):
boxes, words = OCR(image)
# Preprocessa l'immagine e il testo con il processore di LayoutLMv3
encoding = processor(image, words, boxes=boxes, return_offsets_mapping=True, return_tensors="pt", truncation=True)
offset_mapping = encoding.pop('offset_mapping')
# Esegui l'inferenza con il modello fine-tuned
outputs = model(**encoding)
predictions = outputs.logits.argmax(-1).squeeze().tolist()
token_boxes = encoding.bbox.squeeze().tolist()
probabilities = torch.softmax(outputs.logits, dim=-1)
confidence_scores = probabilities.max(-1).values.squeeze().tolist()
inp_ids = encoding.input_ids.squeeze().tolist()
inp_words = [tokenizer.decode(i) for i in inp_ids]
width, height = image.size
is_subword = np.array(offset_mapping.squeeze().tolist())[:, 0] != 0
true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]]
true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]]
true_confidence_scores = [confidence_scores[idx] for idx, conf in enumerate(confidence_scores) if not is_subword[idx]]
true_words = []
for id, i in enumerate(inp_words):
if not is_subword[id]:
true_words.append(i)
else:
true_words[-1] = true_words[-1]+i
true_predictions = true_predictions[1:-1]
true_boxes = true_boxes[1:-1]
true_words = true_words[1:-1]
true_confidence_scores = true_confidence_scores[1:-1]
#for i, j in enumerate(true_confidence_scores):
# if j < 0.5:
# true_predictions[i] = "O"
d = {}
for id, i in enumerate(true_predictions):
#rimuovo i prefissi
if i != "O":
i = i[2:]
if i not in d.keys():
d[i] = true_words[id]
else:
d[i] = d[i] + ", " + true_words[id]
d = {k: v.strip() for (k, v) in d.items()}
if "O" in d: d.pop("O")
draw = ImageDraw.Draw(image, "RGBA")
font = ImageFont.load_default()
for prediction, box, confidence in zip(true_predictions, true_boxes, true_confidence_scores):
draw.rectangle(box)
draw.text((box[0]+10, box[1]-10), text=str(prediction)+ ", "+ str(confidence), font=font, fill="black", font_size="15")
return image, d