Spaces:
Running
Running
from datetime import datetime, timedelta | |
import json | |
import requests | |
import streamlit as st | |
from any_agent import AgentFramework | |
from any_agent.tracing.trace import _is_tracing_supported | |
from any_agent.evaluation import EvaluationCase | |
from any_agent.evaluation.schemas import CheckpointCriteria | |
import pandas as pd | |
from constants import DEFAULT_EVALUATION_CASE, MODEL_OPTIONS | |
from pydantic import BaseModel, ConfigDict | |
class UserInputs(BaseModel): | |
model_config = ConfigDict(extra="forbid") | |
model_id: str | |
location: str | |
max_driving_hours: int | |
date: datetime | |
framework: str | |
evaluation_case: EvaluationCase | |
run_evaluation: bool | |
def get_area(area_name: str) -> dict: | |
"""Get the area from Nominatim. | |
Uses the [Nominatim API](https://nominatim.org/release-docs/develop/api/Search/). | |
Args: | |
area_name (str): The name of the area. | |
Returns: | |
dict: The area found. | |
""" | |
response = requests.get( | |
f"https://nominatim.openstreetmap.org/search?q={area_name}&format=json", | |
headers={"User-Agent": "Mozilla/5.0"}, | |
timeout=5, | |
) | |
response.raise_for_status() | |
response_json = json.loads(response.content.decode()) | |
return response_json | |
def get_user_inputs() -> UserInputs: | |
default_val = "Los Angeles California, US" | |
location = st.text_input("Enter a location", value=default_val) | |
if location: | |
location_check = get_area(location) | |
if not location_check: | |
st.error("β Invalid location") | |
max_driving_hours = st.number_input( | |
"Enter the maximum driving hours", min_value=1, value=2 | |
) | |
col_date, col_time = st.columns([2, 1]) | |
with col_date: | |
date = st.date_input( | |
"Select a date in the future", value=datetime.now() + timedelta(days=1) | |
) | |
with col_time: | |
# default to 9am | |
time = st.selectbox( | |
"Select a time", | |
[datetime.strptime(f"{i:02d}:00", "%H:%M").time() for i in range(24)], | |
index=9, | |
) | |
date = datetime.combine(date, time) | |
supported_frameworks = [ | |
framework for framework in AgentFramework if _is_tracing_supported(framework) | |
] | |
framework = st.selectbox( | |
"Select the agent framework to use", | |
supported_frameworks, | |
index=2, | |
format_func=lambda x: x.name, | |
) | |
model_id = st.selectbox( | |
"Select the model to use", | |
MODEL_OPTIONS, | |
index=1, | |
format_func=lambda x: "/".join(x.split("/")[-3:]), | |
) | |
# Add evaluation case section | |
with st.expander("Custom Evaluation"): | |
evaluation_model_id = st.selectbox( | |
"Select the model to use for LLM-as-a-Judge evaluation", | |
MODEL_OPTIONS, | |
index=2, | |
format_func=lambda x: "/".join(x.split("/")[-3:]), | |
) | |
evaluation_case = DEFAULT_EVALUATION_CASE | |
evaluation_case.llm_judge = evaluation_model_id | |
# make this an editable json section | |
# convert the checkpoints to a df series so that it can be edited | |
checkpoints = evaluation_case.checkpoints | |
checkpoints_df = pd.DataFrame( | |
[checkpoint.model_dump() for checkpoint in checkpoints] | |
) | |
checkpoints_df = st.data_editor( | |
checkpoints_df, | |
column_config={ | |
"points": st.column_config.NumberColumn(label="Points"), | |
"criteria": st.column_config.TextColumn(label="Criteria"), | |
}, | |
hide_index=True, | |
num_rows="dynamic", | |
) | |
# for each checkpoint, convert it back to a CheckpointCriteria object | |
new_ckpts = [] | |
# don't let a user add more than 20 checkpoints | |
if len(checkpoints_df) > 20: | |
st.error( | |
"You can only add up to 20 checkpoints for the purpose of this demo." | |
) | |
checkpoints_df = checkpoints_df[:20] | |
for _, row in checkpoints_df.iterrows(): | |
if row["criteria"] == "": | |
continue | |
try: | |
# Don't let people write essays for criteria in this demo | |
if len(row["criteria"].split(" ")) > 100: | |
raise ValueError("Criteria is too long") | |
new_crit = CheckpointCriteria( | |
criteria=row["criteria"], points=row["points"] | |
) | |
new_ckpts.append(new_crit) | |
except Exception as e: | |
st.error(f"Error creating checkpoint: {e}") | |
evaluation_case.checkpoints = new_ckpts | |
return UserInputs( | |
model_id=model_id, | |
location=location, | |
max_driving_hours=max_driving_hours, | |
date=date, | |
framework=framework, | |
evaluation_case=evaluation_case, | |
run_evaluation=st.checkbox("Run Evaluation", value=True), | |
) | |