Spaces:
Sleeping
Sleeping
at::Tensor reduce_sum(at::Tensor x) { | |
if (x.ndimension() == 2) { | |
return x.sum(0); | |
} else { | |
auto x_view = x.view({x.size(0), x.size(1), -1}); | |
return x_view.sum(-1).sum(0); | |
} | |
} | |
at::Tensor broadcast_to(at::Tensor v, at::Tensor x) { | |
if (x.ndimension() == 2) { | |
return v; | |
} else { | |
std::vector<int64_t> broadcast_size = {1, -1}; | |
for (int64_t i = 2; i < x.ndimension(); ++i) | |
broadcast_size.push_back(1); | |
return v.view(broadcast_size); | |
} | |
} | |
int64_t count(at::Tensor x) { | |
int64_t count = x.size(0); | |
for (int64_t i = 2; i < x.ndimension(); ++i) | |
count *= x.size(i); | |
return count; | |
} | |
at::Tensor invert_affine(at::Tensor z, at::Tensor weight, at::Tensor bias, bool affine, float eps) { | |
if (affine) { | |
return (z - broadcast_to(bias, z)) / broadcast_to(at::abs(weight) + eps, z); | |
} else { | |
return z; | |
} | |
} | |
std::vector<at::Tensor> mean_var_cpu(at::Tensor x) { | |
auto num = count(x); | |
auto mean = reduce_sum(x) / num; | |
auto diff = x - broadcast_to(mean, x); | |
auto var = reduce_sum(diff.pow(2)) / num; | |
return {mean, var}; | |
} | |
at::Tensor forward_cpu(at::Tensor x, at::Tensor mean, at::Tensor var, at::Tensor weight, at::Tensor bias, | |
bool affine, float eps) { | |
auto gamma = affine ? at::abs(weight) + eps : at::ones_like(var); | |
auto mul = at::rsqrt(var + eps) * gamma; | |
x.sub_(broadcast_to(mean, x)); | |
x.mul_(broadcast_to(mul, x)); | |
if (affine) x.add_(broadcast_to(bias, x)); | |
return x; | |
} | |
std::vector<at::Tensor> edz_eydz_cpu(at::Tensor z, at::Tensor dz, at::Tensor weight, at::Tensor bias, | |
bool affine, float eps) { | |
auto edz = reduce_sum(dz); | |
auto y = invert_affine(z, weight, bias, affine, eps); | |
auto eydz = reduce_sum(y * dz); | |
return {edz, eydz}; | |
} | |
at::Tensor backward_cpu(at::Tensor z, at::Tensor dz, at::Tensor var, at::Tensor weight, at::Tensor bias, | |
at::Tensor edz, at::Tensor eydz, bool affine, float eps) { | |
auto y = invert_affine(z, weight, bias, affine, eps); | |
auto mul = affine ? at::rsqrt(var + eps) * (at::abs(weight) + eps) : at::rsqrt(var + eps); | |
auto num = count(z); | |
auto dx = (dz - broadcast_to(edz / num, dz) - y * broadcast_to(eydz / num, dz)) * broadcast_to(mul, dz); | |
return dx; | |
} | |
void leaky_relu_backward_cpu(at::Tensor z, at::Tensor dz, float slope) { | |
CHECK_CPU_INPUT(z); | |
CHECK_CPU_INPUT(dz); | |
AT_DISPATCH_FLOATING_TYPES(z.type(), "leaky_relu_backward_cpu", ([&] { | |
int64_t count = z.numel(); | |
auto *_z = z.data<scalar_t>(); | |
auto *_dz = dz.data<scalar_t>(); | |
for (int64_t i = 0; i < count; ++i) { | |
if (_z[i] < 0) { | |
_z[i] *= 1 / slope; | |
_dz[i] *= slope; | |
} | |
} | |
})); | |
} | |
void elu_backward_cpu(at::Tensor z, at::Tensor dz) { | |
CHECK_CPU_INPUT(z); | |
CHECK_CPU_INPUT(dz); | |
AT_DISPATCH_FLOATING_TYPES(z.type(), "elu_backward_cpu", ([&] { | |
int64_t count = z.numel(); | |
auto *_z = z.data<scalar_t>(); | |
auto *_dz = dz.data<scalar_t>(); | |
for (int64_t i = 0; i < count; ++i) { | |
if (_z[i] < 0) { | |
_z[i] = log1p(_z[i]); | |
_dz[i] *= (_z[i] + 1.f); | |
} | |
} | |
})); | |
} | |