Spaces:
Runtime error
Runtime error
import os | |
# workaround: install old version of pytorch since detectron2 hasn't released packages for pytorch 1.9 (issue: https://github.com/facebookresearch/detectron2/issues/3158) | |
# os.system('pip install torch==1.8.0+cu101 torchvision==0.9.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html') | |
os.system('pip install -q torch==1.10.0+cu111 torchvision==0.11+cu111 -f https://download.pytorch.org/whl/torch_stable.html') | |
# install detectron2 that matches pytorch 1.8 | |
# See https://detectron2.readthedocs.io/tutorials/install.html for instructions | |
#os.system('pip install -q detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.8/index.html') | |
os.system('pip install git+https://github.com/facebookresearch/detectron2.git') | |
import detectron2 | |
from detectron2.utils.logger import setup_logger | |
setup_logger() | |
import gradio as gr | |
import re | |
import string | |
from operator import itemgetter | |
import collections | |
import pypdf | |
from pypdf import PdfReader | |
from pypdf.errors import PdfReadError | |
import pypdfium2 as pdfium | |
import langdetect | |
from langdetect import detect_langs | |
import pandas as pd | |
import numpy as np | |
import random | |
import tempfile | |
import itertools | |
from matplotlib import font_manager | |
from PIL import Image, ImageDraw, ImageFont | |
import cv2 | |
import pathlib | |
from pathlib import Path | |
import shutil | |
from functools import partial | |
## files | |
import sys | |
sys.path.insert(0, 'files/') | |
import functions | |
from functions import * | |
# update pip | |
os.system('python -m pip install --upgrade pip') | |
## model / feature extractor / tokenizer | |
# models | |
model_id_lilt = "pierreguillou/lilt-xlm-roberta-base-finetuned-with-DocLayNet-base-at-paragraphlevel-ml512" | |
model_id_layoutxlm = "pierreguillou/layout-xlm-base-finetuned-with-DocLayNet-base-at-paragraphlevel-ml512" | |
# tokenizer for LayoutXLM | |
tokenizer_id_layoutxlm = "xlm-roberta-base" | |
# get device | |
import torch | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
## model LiLT | |
import transformers | |
from transformers import AutoTokenizer, AutoModelForTokenClassification | |
tokenizer_lilt = AutoTokenizer.from_pretrained(model_id_lilt) | |
model_lilt = AutoModelForTokenClassification.from_pretrained(model_id_lilt); | |
model_lilt.to(device); | |
## model LayoutXLM | |
from transformers import LayoutLMv2ForTokenClassification # LayoutXLMTokenizerFast, | |
model_layoutxlm = LayoutLMv2ForTokenClassification.from_pretrained(model_id_layoutxlm); | |
model_layoutxlm.to(device); | |
# feature extractor | |
from transformers import LayoutLMv2FeatureExtractor | |
feature_extractor = LayoutLMv2FeatureExtractor(apply_ocr=False) | |
# tokenizer | |
from transformers import AutoTokenizer | |
tokenizer_layoutxlm = AutoTokenizer.from_pretrained(tokenizer_id_layoutxlm) | |
# get labels | |
id2label_lilt = model_lilt.config.id2label | |
label2id_lilt = model_lilt.config.label2id | |
num_labels_lilt = len(id2label_lilt) | |
id2label_layoutxlm = model_layoutxlm.config.id2label | |
label2id_layoutxlm = model_layoutxlm.config.label2id | |
num_labels_layoutxlm = len(id2label_layoutxlm) | |
# APP outputs | |
# APP outputs by model | |
def app_outputs_by_model(uploaded_pdf, model_id, model, tokenizer, max_length, id2label, cls_box, sep_box): | |
filename, msg, images = pdf_to_images(uploaded_pdf) | |
num_images = len(images) | |
if not msg.startswith("Error with the PDF"): | |
# Extraction of image data (text and bounding boxes) | |
dataset, texts_lines, texts_pars, texts_lines_par, row_indexes, par_boxes, line_boxes, lines_par_boxes = extraction_data_from_image(images) | |
# prepare our data in the format of the model | |
prepare_inference_features_partial = partial(prepare_inference_features_paragraph, tokenizer=tokenizer, max_length=max_length, cls_box=cls_box, sep_box=sep_box) | |
encoded_dataset = dataset.map(prepare_inference_features_partial, batched=True, batch_size=64, remove_columns=dataset.column_names) | |
custom_encoded_dataset = CustomDataset(encoded_dataset, tokenizer) | |
# Get predictions (token level) | |
outputs, images_ids_list, chunk_ids, input_ids, bboxes = predictions_token_level(images, custom_encoded_dataset, model_id, model) | |
# Get predictions (line level) | |
probs_bbox, bboxes_list_dict, input_ids_dict_dict, probs_dict_dict, df = predictions_paragraph_level(max_length, tokenizer, id2label, dataset, outputs, images_ids_list, chunk_ids, input_ids, bboxes, cls_box, sep_box) | |
# Get labeled images with lines bounding boxes | |
images = get_labeled_images(id2label, dataset, images_ids_list, bboxes_list_dict, probs_dict_dict) | |
img_files = list() | |
# get image of PDF without bounding boxes | |
for i in range(num_images): | |
if filename != "files/blank.png": img_file = f"img_{i}_" + filename.replace(".pdf", ".png") | |
else: img_file = filename.replace(".pdf", ".png") | |
img_file = img_file.replace("/", "_") | |
images[i].save(img_file) | |
img_files.append(img_file) | |
if num_images < max_imgboxes: | |
img_files += [image_blank]*(max_imgboxes - num_images) | |
images += [Image.open(image_blank)]*(max_imgboxes - num_images) | |
for count in range(max_imgboxes - num_images): | |
df[num_images + count] = pd.DataFrame() | |
else: | |
img_files = img_files[:max_imgboxes] | |
images = images[:max_imgboxes] | |
df = dict(itertools.islice(df.items(), max_imgboxes)) | |
# save | |
csv_files = list() | |
for i in range(max_imgboxes): | |
csv_file = f"csv_{i}_" + filename.replace(".pdf", ".csv") | |
csv_file = csv_file.replace("/", "_") | |
csv_files.append(gr.File.update(value=csv_file, visible=True)) | |
df[i].to_csv(csv_file, encoding="utf-8", index=False) | |
if max_imgboxes >= 2: | |
return msg, img_files[0], img_files[1], images[0], images[1], csv_files[0], csv_files[1], df[0], df[1] | |
else: | |
return msg, img_files[0], images[0], csv_files[0], df[0] | |
else: | |
img_files, images, csv_files = [""]*max_imgboxes, [""]*max_imgboxes, [""]*max_imgboxes | |
if max_imgboxes >= 2: | |
img_files[0], img_files[1] = image_blank, image_blank | |
images[0], images[1] = Image.open(image_blank), Image.open(image_blank) | |
csv_file = "csv_wo_content.csv" | |
csv_files[0], csv_files[1] = gr.File.update(value=csv_file, visible=True), gr.File.update(value=csv_file, visible=True) | |
df, df_empty = dict(), pd.DataFrame() | |
df[0], df[1] = df_empty.to_csv(csv_file, encoding="utf-8", index=False), df_empty.to_csv(csv_file, encoding="utf-8", index=False) | |
return msg, img_files[0], img_files[1], images[0], images[1], csv_files[0], csv_files[1], df[0], df[1] | |
else: | |
img_files[0] = image_blank | |
images[0] = Image.open(image_blank) | |
csv_file = "csv_wo_content.csv" | |
csv_files[0] = gr.File.update(value=csv_file, visible=True) | |
df, df_empty = dict(), pd.DataFrame() | |
df[0] = df_empty.to_csv(csv_file, encoding="utf-8", index=False) | |
return msg, img_files[0], images[0], csv_files[0], df[0] | |
def app_outputs(uploaded_pdf): | |
msg_lilt, img_files_lilt, images_lilt, csv_files_lilt, df_lilt = app_outputs_by_model(uploaded_pdf, | |
model_id=model_id_lilt, model=model_lilt, tokenizer=tokenizer_lilt, | |
max_length=max_length_lilt, id2label=id2label_lilt, cls_box=cls_box, sep_box=sep_box_lilt) | |
msg_layoutxlm, img_files_layoutxlm, images_layoutxlm, csv_files_layoutxlm, df_layoutxlm = app_outputs_by_model(uploaded_pdf, | |
model_id=model_id_layoutxlm, model=model_layoutxlm, tokenizer=tokenizer_layoutxlm, | |
max_length=max_length_layoutxlm, id2label=id2label_layoutxlm, cls_box=cls_box, sep_box=sep_box_layoutxlm) | |
return msg_lilt, msg_layoutxlm, img_files_lilt, img_files_layoutxlm, images_lilt, images_layoutxlm, csv_files_lilt, csv_files_layoutxlm, df_lilt, df_layoutxlm | |
# Gradio APP | |
with gr.Blocks(title="Inference APP for Document Understanding at paragraph level (v1 - LiLT base vs LayoutXLM base)", css=".gradio-container") as demo: | |
gr.HTML(""" | |
<div style="font-family:'Times New Roman', 'Serif'; font-size:26pt; font-weight:bold; text-align:center;"><h1>Inference APP for Document Understanding at paragraph level (v1 - LiLT base vs LayoutXLM base)</h1></div> | |
<div style="margin-top: 40px"><p>(04/01/2023) This Inference APP compares - only on the first PDF page - 2 Document Understanding models finetuned on the dataset <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://huggingface.co/datasets/pierreguillou/DocLayNet-base" target="_blank">DocLayNet base</a> at paragraph level (chunk size of 512 tokens): <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://huggingface.co/pierreguillou/lilt-xlm-roberta-base-finetuned-with-DocLayNet-base-at-paragraphlevel-ml512" target="_blank">LiLT base combined with XLM-RoBERTa base</a> and <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://huggingface.co/pierreguillou/layout-xlm-base-finetuned-with-DocLayNet-base-at-paragraphlevel-ml512" target="_blank">LayoutXLM base combined with XLM-RoBERTa base</a>.</p></div> | |
<div><p>To test these 2 models separately, use their corresponding APP on Hugging Face Spaces: <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://huggingface.co/spaces/pierreguillou/Inference-APP-Document-Understanding-at-paragraphlevel-v1" target="_blank">LiLT base APP (v1 - paragraph level)</a> and <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://huggingface.co/spaces/pierreguillou/Inference-APP-Document-Understanding-at-paragraphlevel-v2" target="_blank">LayoutXLM base APP (v2 - paragraph level)</a>.</p></div><div style="margin-top: 20px"><p>Links to Document Understanding APPs:</p><ul><li>Line level: <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://huggingface.co/spaces/pierreguillou/Inference-APP-Document-Understanding-at-linelevel-v1" target="_blank">v1 (LiLT base)</a> | <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://huggingface.co/spaces/pierreguillou/Inference-APP-Document-Understanding-at-linelevel-v2" target="_blank">v2 (LayoutXLM base)</a> | <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://huggingface.co/spaces/pierreguillou/Inference-comparison-APP-Document-Understanding-at-paragraphlevel-v1" target="_blank">v2 vs v1 (LayoutXLM vs LiLT)</a> | <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://huggingface.co/spaces/pierreguillou/Inference-APP-Document-Understanding-at-paragraphlevel-v3" target="_blank">Ensemble v1 (LiLT & LayoutXLM)</a></li><li>Paragraph level: <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://huggingface.co/spaces/pierreguillou/Inference-APP-Document-Understanding-at-paragraphlevel-v1" target="_blank">v1 (LiLT base)</a> | <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://huggingface.co/spaces/pierreguillou/Inference-APP-Document-Understanding-at-paragraphlevel-v2" target="_blank">v2 (LayoutXLM base)</a></li></ul></div> | |
<div style="margin-top: 20px"><p>More information about the DocLayNet datasets, the finetuning of the model and this APP in the following blog posts:</p><ul><li>(03/31/2023) <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://medium.com/@pierre_guillou/document-ai-inference-app-and-fine-tuning-notebook-for-document-understanding-at-paragraph-level-3507af80573d" target="_blank">Document AI | Inference APP and fine-tuning notebook for Document Understanding at paragraph level with LayoutXLM base</a></li><li>(03/25/2023) <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://medium.com/@pierre_guillou/document-ai-app-to-compare-the-document-understanding-lilt-and-layoutxlm-base-models-at-line-1c53eb481a15" target="_blank">Document AI | APP to compare the Document Understanding LiLT and LayoutXLM (base) models at line level</a></li><li>(03/05/2023) <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://medium.com/@pierre_guillou/document-ai-inference-app-and-fine-tuning-notebook-for-document-understanding-at-line-level-with-b08fdca5f4dc" target="_blank">Document AI | Inference APP and fine-tuning notebook for Document Understanding at line level with LayoutXLM base</a></li><li>(02/14/2023) <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://medium.com/@pierre_guillou/document-ai-inference-app-for-document-understanding-at-line-level-a35bbfa98893" target="_blank">Document AI | Inference APP for Document Understanding at line level</a></li><li>(02/10/2023) <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://medium.com/@pierre_guillou/document-ai-document-understanding-model-at-line-level-with-lilt-tesseract-and-doclaynet-dataset-347107a643b8" target="_blank">Document AI | Document Understanding model at line level with LiLT, Tesseract and DocLayNet dataset</a></li><li>(01/31/2023) <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://medium.com/@pierre_guillou/document-ai-doclaynet-image-viewer-app-3ac54c19956" target="_blank">Document AI | DocLayNet image viewer APP</a></li><li>(01/27/2023) <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://medium.com/@pierre_guillou/document-ai-processing-of-doclaynet-dataset-to-be-used-by-layout-models-of-the-hugging-face-hub-308d8bd81cdb" target="_blank">Document AI | Processing of DocLayNet dataset to be used by layout models of the Hugging Face hub (finetuning, inference)</a></li></ul></div> | |
""") | |
with gr.Row(): | |
pdf_file = gr.File(label="PDF") | |
with gr.Row(): | |
submit_btn = gr.Button(f"Get layout detection by LiLT and LayoutXLM on the first PDF page") | |
reset_btn = gr.Button(value="Clear") | |
with gr.Row(): | |
output_messages = [] | |
with gr.Column(): | |
output_msg = gr.Textbox(label="LiLT output message") | |
output_messages.append(output_msg) | |
with gr.Column(): | |
output_msg = gr.Textbox(label="LayoutXLM output message") | |
output_messages.append(output_msg) | |
with gr.Row(): | |
fileboxes = [] | |
with gr.Column(): | |
file_path = gr.File(visible=True, label=f"LiLT image file") | |
fileboxes.append(file_path) | |
with gr.Column(): | |
file_path = gr.File(visible=True, label=f"LayoutXLM image file") | |
fileboxes.append(file_path) | |
with gr.Row(): | |
imgboxes = [] | |
with gr.Column(): | |
img = gr.Image(type="pil", label=f"Lilt Image") | |
imgboxes.append(img) | |
with gr.Column(): | |
img = gr.Image(type="pil", label=f"LayoutXLM Image") | |
imgboxes.append(img) | |
with gr.Row(): | |
csvboxes = [] | |
with gr.Column(): | |
csv = gr.File(visible=True, label=f"LiLT csv file at paragraph level") | |
csvboxes.append(csv) | |
with gr.Column(): | |
csv = gr.File(visible=True, label=f"LayoutXLM csv file at paragraph level") | |
csvboxes.append(csv) | |
with gr.Row(): | |
dfboxes = [] | |
with gr.Column(): | |
df = gr.Dataframe( | |
headers=["bounding boxes", "texts", "labels"], | |
datatype=["str", "str", "str"], | |
col_count=(3, "fixed"), | |
visible=True, | |
label=f"LiLT data", | |
type="pandas", | |
wrap=True | |
) | |
dfboxes.append(df) | |
with gr.Column(): | |
df = gr.Dataframe( | |
headers=["bounding boxes", "texts", "labels"], | |
datatype=["str", "str", "str"], | |
col_count=(3, "fixed"), | |
visible=True, | |
label=f"LayoutXLM data", | |
type="pandas", | |
wrap=True | |
) | |
dfboxes.append(df) | |
outputboxes = output_messages + fileboxes + imgboxes + csvboxes + dfboxes | |
submit_btn.click(app_outputs, inputs=[pdf_file], outputs=outputboxes) | |
# https://github.com/gradio-app/gradio/pull/2044/files#diff-a91dd2749f68bb7d0099a0f4079a4fd2d10281e299e7b451cb1bb876a7c21975R91 | |
reset_btn.click( | |
lambda: [pdf_file.update(value=None)] + [output_msg.update(value=None) for output_msg in output_messages] + [filebox.update(value=None) for filebox in fileboxes] + [imgbox.update(value=None) for imgbox in imgboxes] + [csvbox.update(value=None) for csvbox in csvboxes] + [dfbox.update(value=None) for dfbox in dfboxes], | |
inputs=[], | |
outputs=[pdf_file] + output_messages + fileboxes + imgboxes + csvboxes + dfboxes | |
) | |
gr.Examples( | |
[["files/example.pdf"]], | |
[pdf_file], | |
outputboxes, | |
fn=app_outputs, | |
cache_examples=True, | |
) | |
if __name__ == "__main__": | |
demo.launch() |