cellpose / app.py
mouseland's picture
Update app.py
c994db7 verified
raw
history blame
9.07 kB
import numpy as np
import gradio as gr
import spaces
import cv2
from cellpose import models
from matplotlib.colors import hsv_to_rgb
import matplotlib.pyplot as plt
import os, io, base64
from PIL import Image
from cellpose.io import imread, imsave
# @title Data retrieval
def download_weights():
import os, requests
fname = ['cpsam']
url = ["https://osf.io/d7c8e/download"]
for j in range(len(url)):
if not os.path.isfile(fname[j]):
try:
r = requests.get(url[j])
except requests.ConnectionError:
print("!!! Failed to download data !!!")
else:
if r.status_code != requests.codes.ok:
print("!!! Failed to download data !!!")
else:
with open(fname[j], "wb") as fid:
fid.write(r.content)
try:
download_weights()
model = models.CellposeModel(gpu=True, pretrained_model="cpsam")
except Exception as e:
print(f"Error loading model: {e}")
exit(1)
def plot_flows(y):
Y = (np.clip(normalize99(y[0][0]),0,1) - 0.5) * 2
X = (np.clip(normalize99(y[1][0]),0,1) - 0.5) * 2
H = (np.arctan2(Y, X) + np.pi) / (2*np.pi)
S = normalize99(y[0][0]**2 + y[1][0]**2)
HSV = np.concatenate((H[:,:,np.newaxis], S[:,:,np.newaxis], S[:,:,np.newaxis]), axis=-1)
HSV = np.clip(HSV, 0.0, 1.0)
flow = (hsv_to_rgb(HSV) * 255).astype(np.uint8)
return flow
def plot_outlines(img, masks):
outpix = []
contours, hierarchy = cv2.findContours(masks.astype(np.int32), mode=cv2.RETR_FLOODFILL, method=cv2.CHAIN_APPROX_SIMPLE)
for c in range(len(contours)):
pix = contours[c].astype(int).squeeze()
if len(pix)>4:
peri = cv2.arcLength(contours[c], True)
approx = cv2.approxPolyDP(contours[c], 0.001, True)[:,0,:]
outpix.append(approx)
figsize = (6,6)
if img.shape[0]>img.shape[1]:
figsize = (6*img.shape[1]/img.shape[0], 6)
else:
figsize = (6, 6*img.shape[0]/img.shape[1])
fig = plt.figure(figsize=figsize, facecolor='k')
ax = fig.add_axes([0.0,0.0,1,1])
ax.set_xlim([0,img.shape[1]])
ax.set_ylim([0,img.shape[0]])
ax.imshow(img[::-1], origin='upper', aspect = 'auto')
if outpix is not None:
for o in outpix:
ax.plot(o[:,0], img.shape[0]-o[:,1], color=[1,0,0], lw=1)
ax.axis('off')
#bytes_image = io.BytesIO()
#plt.savefig(bytes_image, format='png', facecolor=fig.get_facecolor(), edgecolor='none')
#bytes_image.seek(0)
#img_arr = np.frombuffer(bytes_image.getvalue(), dtype=np.uint8)
#bytes_image.close()
#img = cv2.imdecode(img_arr, 1)
#img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
#del bytes_image
#fig.clf()
#plt.close(fig)
buf = io.BytesIO()
fig.savefig(buf, bbox_inches='tight')
buf.seek(0)
pil_img = Image.open(buf)
return pil_img
def plot_overlay(img, masks):
img = normalize99(img.astype(np.float32).mean(axis=-1))
img -= img.min()
img /= img.max()
HSV = np.zeros((img.shape[0], img.shape[1], 3), np.float32)
HSV[:,:,2] = np.clip(img*1.5, 0, 1.0)
for n in range(int(masks.max())):
ipix = (masks==n+1).nonzero()
HSV[ipix[0],ipix[1],0] = np.random.rand()
HSV[ipix[0],ipix[1],1] = 1.0
RGB = (hsv_to_rgb(HSV) * 255).astype(np.uint8)
return RGB
def normalize99(img):
X = img.copy()
X = (X - np.percentile(X, 1)) / (np.percentile(X, 99) - np.percentile(X, 1))
return X
def image_resize(img, resize=400):
ny,nx = img.shape[:2]
if np.array(img.shape).max() > resize:
if ny>nx:
nx = int(nx/ny * resize)
ny = resize
else:
ny = int(ny/nx * resize)
nx = resize
shape = (nx,ny)
img = cv2.resize(img, shape)
img = img.astype(np.uint8)
return img
@spaces.GPU(duration=10)
def run_model_gpu(img):
masks, flows, _ = model.eval(img)#, channels = [0,0])
return masks, flows
@spaces.GPU(duration=60)
def run_model_gpu60(img):
masks, flows, _ = model.eval(img)#, channels = [0,0])
return masks, flows
@spaces.GPU(duration=240)
def run_model_gpu240(img):
masks, flows, _ = model.eval(img)#, channels = [0,0])
return masks, flows
@spaces.GPU(duration=1000)
def run_model_gpu1000(img):
masks, flows, _ = model.eval(img)#, channels = [0,0])
return masks, flows
#@spaces.GPU(duration=10)
def cellpose_segment(img_pil, resize = 400):
img_input = imread(img_pil)
#img_input = np.array(img_pil)
img = image_resize(img_input, resize = resize)
resize = np.max(img.shape)
if resize<1000:
masks, flows = run_model_gpu(img)
elif resize < 5000:
masks, flows = run_model_gpu60(img)
elif resize < 20000:
masks, flows = run_model_gpu240(img)
else:
raise ValueError("Image size must be less than 20,000")
#masks, flows, _ = model.eval(img, channels=[0,0])
flows = flows[0]
# masks = np.zeros(img.shape[:2])
# flows = np.zeros_like(img)
outpix = plot_outlines(img, masks)
overlay = plot_overlay(img, masks)
target_size = (img_input.shape[1], img_input.shape[0])
if (target_size[0]!=img.shape[1] or target_size[1]!=img.shape[0]):
# scale it back to keep the orignal size
masks = cv2.resize(masks.astype('uint16'), target_size, interpolation=cv2.INTER_NEAREST).astype('uint16')
#flows = cv2.resize(flows.astype('float32'), target_size).astype('uint8')
#crand = .2 + .8 * np.random.rand(np.max(masks.flatten()).astype('int')+1,).astype('float32')
#crand[0] = 0
overlay = Image.fromarray(overlay)
flows = Image.fromarray(flows)
Ly, Lx = img.shape[:2]
c = Lx
outpix = outpix.resize((Lx, Ly), resample = Image.BICUBIC)
overlay = overlay.resize((Lx, Ly), resample = Image.BICUBIC)
flows = flows.resize((Lx, Ly), resample = Image.BICUBIC)
#masks = Image.fromarray(255. * crand[masks])
#pil_masks = Image.fromarray(masks.astype('int32'))
#pil_masks.save(fname_mask)
fname_out = os.path.splitext(img_pil)[0]+"_outlines.png"
fname_masks = os.path.splitext(img_pil)[0]+"_masks.tif"
imsave(fname_masks, masks)
outpix.save(fname_out) #"outlines.png")
b1 = gr.DownloadButton(visible=True, value = fname_masks)
b2 = gr.DownloadButton(visible=True, value = fname_out) #"outlines.png")
return outpix, overlay, flows, b1, b2
# Gradio Interface
#iface = gr.Interface(
# fn=cellpose_segment,
# inputs="image",
# outputs=["image", "image", "image", "image"],
# title="cellpose segmentation",
# description="upload an image, then cellpose will segment it at a max size of 400x400 (for full functionality, 'pip install cellpose' locally)"
#)
def download_function():
b1 = gr.DownloadButton("Download masks as TIFF", visible=False)
b2 = gr.DownloadButton("Download outline image as PNG", visible=False)
return b1, b2
with gr.Blocks(title = "Hello",
css=".gradio-container {background:purple;}") as demo:
with gr.Row():
with gr.Column(scale=2):
gr.HTML("""<div style="font-family:'Times New Roman', 'Serif'; font-size:16pt; font-weight:bold; text-align:center; color:white;">Cellpose-SAM for cellular segmentation</div>""")
gr.HTML("""<h4 style="color:white;">You may need to refresh/login for 5 minutes of free GPU compute/day. </h4>""")
gr.HTML("""<h4 style="color:white;">"pip install cellpose" for full functionality. </h4>""")
input_image = gr.Image(label = "Input image", type = "filepath")
with gr.Row():
resize = gr.Number(label = 'max resize', value = 400)
send_btn = gr.Button("Run Cellpose-SAM")
with gr.Row():
down_btn = gr.DownloadButton("Download masks (TIF)", visible=False)
down_btn2 = gr.DownloadButton("Download outlines (PNG)", visible=False)
gr.HTML("""<a style="color:white;" href="https://github.com/MouseLand/cellpose" target="_blank">github page for cellpose</a>""")
gr.HTML("""<a style="color:white;" href="https://github.com/MouseLand/cellpose" target="_blank">Cellpose-SAM paper</a>""")
with gr.Column(scale=2):
img_outlines = gr.Image(label = "Outlines", type = "pil", format = 'png') #, width = "50vw", height = "20vw")
img_overlay = gr.Image(label = "Overlay", type = "pil", format = 'png') #, width = "50vw", height = "20vw")
flows = gr.Image(label = "Cellpose flows", type = "pil", format = 'png') #, width = "50vw", height = "20vw")
#masks = gr.Image(label = "Output image", type = "numpy")
send_btn.click(fn=cellpose_segment, inputs=[input_image, resize], outputs=[img_outlines, img_overlay, flows, down_btn, down_btn2])
#down_btn.click(download_function, None, [down_btn, down_btn2])
demo.launch()