mouadenna's picture
Create app.py
9b3b1ab verified
raw
history blame
7.1 kB
import gradio as gr
import geopandas as gpd
import leafmap.foliumap as leafmap
from PIL import Image
import rasterio
from rasterio.windows import Window
from tqdm import tqdm
import io
import zipfile
import os
import albumentations as albu
import segmentation_models_pytorch as smp
from albumentations.pytorch.transforms import ToTensorV2
from shapely.geometry import shape
from shapely.ops import unary_union
from rasterio.features import shapes
import torch
import numpy as np
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
ENCODER = 'se_resnext50_32x4d'
ENCODER_WEIGHTS = 'imagenet'
# Load and prepare the model
def load_model():
model = torch.load('deeplabv3+ v15.pth', map_location=DEVICE)
model.eval().float()
return model
best_model = load_model()
def to_tensor(x, **kwargs):
return x.astype('float32')
# Preprocessing
preprocessing_fn = smp.encoders.get_preprocessing_fn(ENCODER, ENCODER_WEIGHTS)
def get_preprocessing(tile_size):
_transform = [
albu.PadIfNeeded(min_height=tile_size, min_width=tile_size, always_apply=True),
albu.Lambda(image=preprocessing_fn),
albu.Lambda(image=to_tensor, mask=to_tensor),
ToTensorV2(),
]
return albu.Compose(_transform)
def extract_tiles(map_file, model, tile_size=512, overlap=0, batch_size=4, threshold=0.6):
preprocess = get_preprocessing(tile_size)
tiles = []
with rasterio.open(map_file) as src:
height = src.height
width = src.width
effective_tile_size = tile_size - overlap
for y in stqdm(range(0, height, effective_tile_size)):
for x in range(0, width, effective_tile_size):
batch_images = []
batch_metas = []
for i in range(batch_size):
curr_y = y + (i * effective_tile_size)
if curr_y >= height:
break
window = Window(x, curr_y, tile_size, tile_size)
out_image = src.read(window=window)
if out_image.shape[0] == 1:
out_image = np.repeat(out_image, 3, axis=0)
elif out_image.shape[0] != 3:
raise ValueError("The number of channels in the image is not supported")
out_image = np.transpose(out_image, (1, 2, 0))
tile_image = Image.fromarray(out_image.astype(np.uint8))
out_meta = src.meta.copy()
out_meta.update({
"driver": "GTiff",
"height": tile_size,
"width": tile_size,
"transform": rasterio.windows.transform(window, src.transform)
})
tile_image = np.array(tile_image)
preprocessed_tile = preprocess(image=tile_image)['image']
batch_images.append(preprocessed_tile)
batch_metas.append(out_meta)
if not batch_images:
break
batch_tensor = torch.cat([img.unsqueeze(0).to(DEVICE) for img in batch_images], dim=0)
with torch.no_grad():
batch_masks = model(batch_tensor)
batch_masks = torch.sigmoid(batch_masks)
batch_masks = (batch_masks > threshold).float()
for j, mask_tensor in enumerate(batch_masks):
mask_resized = torch.nn.functional.interpolate(mask_tensor.unsqueeze(0),
size=(tile_size, tile_size), mode='bilinear',
align_corners=False).squeeze(0)
mask_array = mask_resized.squeeze().cpu().numpy()
if mask_array.any() == 1:
tiles.append([mask_array, batch_metas[j]])
return tiles
def create_vector_mask(tiles, output_path):
all_polygons = []
for mask_array, meta in tiles:
# Ensure mask is binary
mask_array = (mask_array > 0).astype(np.uint8)
# Get shapes from the mask
mask_shapes = list(shapes(mask_array, mask=mask_array, transform=meta['transform']))
# Convert shapes to Shapely polygons
polygons = [shape(geom) for geom, value in mask_shapes if value == 1]
all_polygons.extend(polygons)
# Perform union of all polygons
union_polygon = unary_union(all_polygons)
# Create a GeoDataFrame
gdf = gpd.GeoDataFrame({'geometry': [union_polygon]}, crs=meta['crs'])
# Save to file
gdf.to_file(output_path)
# Calculate area in square meters
area_m2 = gdf.to_crs(epsg=3857).area.sum()
return gdf, area_m2
def display_map(shapefile_path, tif_path):
# Create a leafmap centered on the shapefile bounds
mask = gpd.read_file(shapefile_path)
if mask.crs is None or mask.crs.to_string() != 'EPSG:3857':
mask = mask.to_crs('EPSG:3857')
bounds = mask.total_bounds
center = [(bounds[1] + bounds[3]) / 2, (bounds[0] + bounds[2]) / 2]
m = leafmap.Map(center=[center[1], center[0]], zoom=10, crs='EPSG3857')
m.add_gdf(mask, layer_name="Shapefile Mask")
m.add_raster(tif_path, layer_name="Satellite Image", rgb=True, opacity=0.9)
return m
def process_file(tif_file, resolution, overlap, threshold):
with open("temp.tif", "wb") as f:
f.write(tif_file.read())
best_model.float()
tiles = extract_tiles("temp.tif", best_model, tile_size=resolution, overlap=overlap, batch_size=4, threshold=threshold)
output_path = "output_mask.shp"
result_gdf, area_m2 = create_vector_mask(tiles, output_path)
# Create zip file for shapefile
shp_files = [f for f in os.listdir() if f.startswith("output_mask") and f.endswith((".shp", ".shx", ".dbf", ".prj"))]
with io.BytesIO() as zip_buffer:
with zipfile.ZipFile(zip_buffer, 'a', zipfile.ZIP_DEFLATED, False) as zip_file:
for file in shp_files:
zip_file.write(file)
zip_buffer.seek(0)
with open("output_mask.zip", "wb") as f:
f.write(zip_buffer.getvalue())
# Display map
map_html = display_map("output_mask.shp", "temp.tif").to_html()
# Clean up temporary files
os.remove("temp.tif")
for file in shp_files:
os.remove(file)
return f"Total area occupied by PV panels: {area_m2:.4f} m^2", "output_mask.zip", map_html
iface = gr.Interface(
fn=process_file,
inputs=[
gr.File(label="Upload TIF file"),
gr.Radio([512, 1024], label="Processing resolution", value=512),
gr.Slider(50, 150, value=100, step=25, label="Overlap"),
gr.Slider(0.1, 0.9, value=0.6, step=0.01, label="Threshold")
],
outputs=[
gr.Textbox(label="Result"),
gr.File(label="Download Shapefile"),
gr.HTML(label="Map")
],
title="PV Segmentor",
description="Upload a TIF file to process and segment PV panels."
)
if __name__ == "__main__":
iface.launch()