draw / app.py
mouadenna's picture
Update app.py
d36ca6b verified
raw
history blame
2.05 kB
import streamlit as st
from streamlit_drawable_canvas import st_canvas
import cv2
from tensorflow.keras.models import load_model
import numpy as np
from PIL import Image
# Define the list of Arabic characters
arabic_chars = ['alef', 'beh', 'teh', 'theh', 'jeem', 'hah', 'khah', 'dal', 'thal', 'reh', 'zain', 'seen', 'sheen',
'sad', 'dad', 'tah', 'zah', 'ain', 'ghain', 'feh', 'qaf', 'kaf', 'lam', 'meem', 'noon', 'heh', 'waw', 'yeh']
# Load the model once at the beginning
model_path = "saved_model.h5" # Update with your model path
model = load_model(model_path)
# Define the prediction function
def predict_image(image):
# Convert to grayscale
img = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2GRAY)
# Invert the image colors (black background with white letter)
img = cv2.bitwise_not(img)
# Resize the image to the size expected by the model
img = cv2.resize(img, (32, 32))
# Reshape and normalize the image
img = img.reshape(1, 32, 32, 1)
img = img.astype('float32') / 255.0
# Predict the character
pred = model.predict(img)
predicted_label = arabic_chars[np.argmax(pred)]
return predicted_label
# Streamlit app
st.title("Arabic Character Recognition App")
canvas_result = st_canvas(
fill_color="rgba(255, 165, 0, 0.3)", # Filled color
stroke_width=12, # Stroke width
stroke_color="#FFFFFF", # Stroke color (white)
background_color="#000000", # Canvas background color (black)
update_streamlit=True,
height=400,
width=400,
drawing_mode="freedraw",
key="canvas",
)
if canvas_result.image_data is not None:
# Display the drawn image
st.image(canvas_result.image_data)
# Convert the canvas image data to a PIL image
image = Image.fromarray(canvas_result.image_data.astype('uint8'), 'RGBA').convert('RGB')
#st.image(image)
# Predict the character
predicted_char = predict_image(image)
# Display the predicted character
st.subheader(f"Predicted Character: {predicted_char}")