Spaces:
Paused
Paused
| import joblib | |
| import sklearn | |
| import pandas as pd | |
| import numpy as np | |
| loaded_rf = joblib.load("model_joblib") | |
| Description=pd.read_csv("symptom_Description.csv") | |
| severity=pd.read_csv("Symptom-severity.csv") | |
| severity['Symptom'] = severity['Symptom'].str.replace('_',' ') | |
| precaution = pd.read_csv("symptom_precaution.csv") | |
| def predd(x,psymptoms): | |
| #print(psymptoms) | |
| psymptoms.extend([0] * (17-len(psymptoms))) | |
| a = np.array(severity["Symptom"]) | |
| b = np.array(severity["weight"]) | |
| for j in range(len(psymptoms)): | |
| for k in range(len(a)): | |
| if psymptoms[j]==a[k]: | |
| psymptoms[j]=b[k] | |
| psy = [psymptoms] | |
| pred2 = x.predict(psy) | |
| disp= Description[Description['Disease']==pred2[0]] | |
| disp = disp.values[0][1] | |
| recomnd = precaution[precaution['Disease']==pred2[0]] | |
| c=np.where(precaution['Disease']==pred2[0])[0][0] | |
| precuation_list=[] | |
| for i in range(1,len(precaution.iloc[c])): | |
| precuation_list.append(precaution.iloc[c,i]) | |
| combined_info = f"The Disease Name: {pred2[0]}\nThe Disease Description: {disp}\nRecommended Things to do at home:"+''.join([f'\n -{i}' for i in precuation_list]) | |
| return combined_info |