OFA / fairseq /tests /test_multi_corpus_dataset.py
root
init
93b9482
raw
history blame
2.54 kB
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import unittest
from collections import OrderedDict
import torch
from fairseq.data import LanguagePairDataset, TokenBlockDataset
from fairseq.data.multi_corpus_dataset import MultiCorpusDataset
from tests.test_train import mock_dict
class TestMultiCorpusDataset(unittest.TestCase):
def setUp(self):
d = mock_dict()
tokens_1 = torch.LongTensor([i for i in range(1, 5000, 2)]).view(1, -1)
tokens_ds1 = TokenBlockDataset(
tokens_1,
sizes=[tokens_1.size(-1)],
block_size=1,
pad=0,
eos=1,
include_targets=False,
)
self.dataset_1 = LanguagePairDataset(
tokens_ds1, tokens_ds1.sizes, d, shuffle=False
)
tokens_2 = torch.LongTensor([i for i in range(0, 5000, 2)]).view(1, -1)
tokens_ds2 = TokenBlockDataset(
tokens_2,
sizes=[tokens_2.size(-1)],
block_size=1,
pad=0,
eos=1,
include_targets=False,
)
self.dataset_2 = LanguagePairDataset(
tokens_ds2, tokens_ds2.sizes, d, shuffle=False
)
def _test_sample_helper(
self,
distribution,
):
m = MultiCorpusDataset(
OrderedDict({0: self.dataset_1, 1: self.dataset_2}),
distribution=distribution,
seed=0,
sort_indices=True,
)
m.set_epoch(1)
indices = m.ordered_indices()
count_sample_from_first_dataset = 0
items = set()
for i in indices:
item = m[i]["source"].item()
if item % 2 == 1:
count_sample_from_first_dataset += 1
items.add(item)
sample_from_first_ds_percentage = (
1.0 * count_sample_from_first_dataset / len(indices)
)
self.assertLess(
abs(sample_from_first_ds_percentage - distribution[0]),
0.01,
)
self.assertEqual(
len(items),
int(min(len(self.dataset_1), len(indices) * distribution[0])
+ min(len(self.dataset_1), len(indices) * distribution[1]))
)
print(distribution)
def test_multi_corpus_dataset(self):
for distribution in [[0.5, 0.5], [0.1, 0.9], [0.9, 0.1]]:
self._test_sample_helper(distribution=distribution)